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Abstract

This thesis reports on a study of the molecular Bose-Einstein condensation (mBEC)

of the 6Li. More specifically, using model the Hartree-Fock (HF) model to fit the

spatial density of the cloud, we demonstrate that the thermal cloud deplete the

condensate, therefore a lower temperature is needed to condense the atoms in the

ground state. Moreover the inter-atomic interactions can be controlled via Feshbach

resonance (see section 2.2), allowing us to study the effects of the interactions on the

thermodynamics properties of a mBEC, especially the critical temperature of the

BEC that decreases when we increase the inter-atomic interactions. The description

starts from the experimental procedure to produce a mBEC to its physical analysis.

We draw a list describing the different chapters presented in the thesis:

Chapter 1 Introduction: We present the fundamental difference between

fermions and bosons, and we give some example of realisations of Bose-Einstein

condensation and degenerate Fermi gas.

Chapter 2 Interactions in an ultracold gas: We discuss the role of in-

teractions depending on the type of particles, either fermions or bosons, and

the phenomena of Feshbach resonance which is a powerful tool to change the

interaction strength between particles.

Chapter 3 Degenerate quantum gas: A brief historical section gives the

fundamental ideas that initiate the long story of the Bose-Einstein conden-
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sation phenomena. We then discuss the mathematical description of a BEC

without interactions, which is the starting point of the theoretical analysis

used in the chapter 3 where we study the influence of the interactions. Then,

we describe the statistics of Fermi gas and the different states that can be

reached using Feshbach resonances, in particular the creation of the Feshbach

molecules.

Chapter 4 Basics of Cold atoms physics: A toolbox of the necessary

knowledge to understand the underlying phenomena and concepts used in a

cold atoms experiment. We describe the kind of atoms used, how these atoms

interact with a magnetic and an electromagnetic field.

Chapter 5 Guideline to making a 6Li BEC: This chapter describes the

experimental methods used in our laboratory to cool down atoms to the regime

of ultra-cold temperature T < 1µK. This section gives details about atomic

beams production, the Zeemann slower (radiation force cooling), the magneto-

optical trap (MOT) (cooling by molasses), optical dipole trap (evaporative

cooling). Also we present the methods used to probe atomic clouds, such as

in situ imaging methods. My contribution to this section has been to im-

prove the stability of the evaporative cooling sequence (see section 5.4.4) and

to optimize the shape of the the evaporative cooling ramp (see section 5.4.1)

in order to maximise the phase space density (PSD), to reach Bose-Einstein

condensation. Then, to make precise simulations and measurements to extract

values of the trapping frequencies (see section 5.4.5) and scattering length (see

section 5.5.4), the latter gives us the interaction strength of the system. These

parameter are then used in the next chapter to extract thermodynamics prop-

erties of the system. Moreover, I developed the sequence for in situ absorption

imaging (see section 5.5.3).

Chapter 6 Study of an interacting 6Li mBEC: This chapter discusses the

theory to understand the thermodynamics properties of an interacting Bose-

6



Einstein condensate. It is accomplished by fitting the spatial atomic density

profiles with different models, the ideal gas (IG) model , the semi-Ideal (SI)

gas model and the Hartree-Fock (HF) model. These three models vary in

complexity from the most simple one the IG model to most elaborated one

the HF model. The HF model requires a lot more of computational power

than the other methods, therefore we present a new numerical method requir-

ing less computational power proposed by Nathan Welch, and demonstrate

experimentally through a statistical analysis that the HF model used to de-

termine the thermodynamics properties of a BEC is more accurate to describe

utracold atomic gas near the transition. Then, we present the results of the

influence of the scattering length on the transition temperature and the chem-

ical potential. My contribution to this section has been to develop tools to

analyse the in situ atomic density profiles and improve the fitting program of

Nathan (see section 6.3). Also, after taking the measurement of the in situ

atomic density profiles, I developed and used the tools for the analysis of the

thermodynamics properties of the mBEC (see section 6.4). I also adapted the

models described in [1] to our experiment to extract the value of the radius

of the condensate (see section 6.5). Finally, with N.Welch we present method

based on energy conservation to verify the validity of the different model, my

principal contribution to this was to modify the experiment to use this method

(see section 6.7).

Chapter 7 Initial work: Double well with 6Li molecules: This chapter

presents the initial work to produce a double well potential to trap cold atoms

and create a Josephson Junction. We present the state of the art of the different

effects that have been observed, and discuss future measurements that would

be achievable in our laboratory, in particular we would like to use a second

specie 133Cs as impurities and observe the influence on Josephson oscillations

of 6Li molecules. An experimental description of the double well trapping
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potential has been implemented and is also described. My contribution to this

section was to design and implement the double well trapping potential.
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Chapter 1

Introduction

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty cold

and austere, like that of sculpture, without appeal to any part of our weaker nature,

without the gorgeous trappings of painting or music, yet sublimely pure, and capa-

ble of a stern perfection such as only the greatest art can show. The true spirit of

delight, the exaltation, the sense of being more than Man, which is the touchstone

of the highest excellence, is to be found in mathematics as surely as in poetry.”

— Bertand Russell

According to Pauli [2], natures divides all particles into two parts, the particles

with an half-integer spin the Fermions, and the particles with an integer spin the

Bosons. The consequence of this feature appears when identical particles get close

enough for their wavefunction to overlap. Fermions tend to repel each other, while

Bosons tend to aggregate in the same state. In other words, the nature of Bosons

and Fermions depends on the symmetry of their wavefunction. Thus, we consider

two non-interacting spinless identical particles ΨA(x1) and ΨB(x2) at the position

x1 and x2.

10



CHAPTER 1. INTRODUCTION 11

We write the composite wave-function of the system:

Ψ(x1, x2) =
1√
2

[ΨA(x1)ΨB(x2)±ΨA(x2)ΨB(x1)] (1.1)

If ± is positive, Ψ is said to be symmetric with respect to exchange in space, i.e.

Ψ(x1, x2) = Ψ(x2, x1). This situation corresponds to the Bosons.

If ± is negative, Ψ is said to be antisymmetric with respect to exchange in space,

i.e. Ψ(x1, x2) = −Ψ(x2, x1). This situation corresponds to the Fermions. For the

Fermions, if the x1 = x2 it implies the composite wavefunction to be Ψ(x1, x1) = 0.

Consequently, the behaviour of the Bosons and the Fermions confined in an harmonic

trap is very different when their wavefunctions expend at very low temperature. The

Bosons undergoes a phase transition so-called Bose-Einstein condensation (BEC)

and most of the atoms go into the lowest energy state, on an other hand the Fermions

fill up all the available states (see Fig .1.1), this state is called a degenerate Fermi

gas.

Bosons Fermions

Figure 1.1: Bosons do not obey to the Pauli exclusion’s principle, consequently at

very low temperature they can aggregate in the lowest energy level and eventually

undergo a phase transition to reach the Bose-Einstein condensation. Fermions do

obey to the Pauli exclusion principle and two fermions can not be in the same state,

therefore they fill up all the states, and the Fermi energy EF is defined as the energy

of the highest occupied energy level.

Bose-Einstein condensation. The first evidence of a BEC was realised in 1995

[3–5], 71 years after the first publication of N.Bose and A.Einstein [6]. From that
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point, many experiments have been realised to understand fundamental aspects of

many-body physics such as macroscopic matter wave interferences [7], the Mott

insulator transition [8]. An excellent general description of BECs can be found in

[9].

Degenerate Fermi gas and cold atom molecules. As described in Fig. 1.1,

fermions behave very differently from the bosons and fill up all the available states.

Various experiments have reached the quantum degeneracy regime with 40K [10, 11]

and 6Li [12–14], and a summary of Fermi gas can be found in [15]. Two fermions

in the same state do not interact, therefore to form pairs a mixture of fermions in

two different states is required, usually two different spin states of the same fermion.

Different regimes exists for these pairs (see Fig. 1.2), depending on the interaction

strength between the atoms. From tightly bound molecules [16] that behaves like a

BEC to the regime of long range Cooper pairs [13, 17] (Bardeen-Cooper-Schrieffer

state). In the middle, the crossover regime [18] where the pair size is in the order of

the inter-particle size and the interaction is very high.

BEC of molecules Crossover superfluid BCS state

Figure 1.2: Pair of Lithium atoms in different regime, each regime can be reached

by tuning a magnetic field around a Feshbach resonance. Figure inspired from [19].

This thesis is focused on the creation and the study of cold atom molecules

in the regime of high interactions. A summary of the different chapters and my

contributions are given in the abstract.



Chapter 2

Interactions in an ultracold gas

The control of the interactions of ultracold particles is a crucial feature of the sys-

tem. The interactions can be controlled through a phenomenon called Feschbach

resonance, which allows us to change the inter-atomic interaction strength by tuning

a magnetic field. It is used in most stages of our experiment. When we evaporate

atoms in the dipole trap, we want to increase the interactions to enhance the ther-

malisation rate [20]. Also, the interactions are used for the creation of the 6Li2

molecules, these molecules are made of two fermions, and follow a Bose-Einstein

distribution, therefore can be cooled down to very low temperature to form a Bose-

Einstein condensate (BEC). The binding energy of the molecules can be tuned and

the molecular BEC (mBEC) can be transformed into a fermionic degenerate gas

of weakly bound molecules, so-called Bardeen-Cooper-Schrieffer (BCS) state, or an

universal regime where the interaction strength diverges.

The interactions between atoms or molecules are described by a quantity called

scattering length a, which is the characteristic length of the interactions.

2.1 Elastic collisions

In our experiment, atoms are cooled down to T < 1µK, therefore collisions happen

at low kinetic energy, in that case collisions are mainly isotropic, this is true if the

13



CHAPTER 2. INTERACTIONS IN AN ULTRACOLD GAS 14

potential is decreasing faster than r−2 [21]. The collision between two particles is

best described in the center-of-mass reference frame. Thus, it can be understood as

the collision of a particle with a wave vector ~k and a scattering centre at the origin.

Far from the scattering centre, the wave function relative to the two particles can

be written as:

ψk(~r) = ψinc + ψsc = ei
~k.~r + fk(θ, k)

eikr

r
. (2.1)

where fk(θ, k) is the probability amplitude for a particle of momentum h̄k to scatter

under an angle θ, ψinc and ψsc are the incident and scattered wavefunctions of the

particles. The scattering amplitude probability fk(θ, k) is directly related to the

differential cross section dσ
dΩ

by:

dσ

dΩ
= |fk(θ, k)|2. (2.2)

Due to the rotational symmetry of the system, a separation of ψk(~r) into an angular

and radial component is possible. The angular component is expanded into the

eigenfunctions of angular momentum l = 0, 1, 2... ( or l=s,p,d,...), using the Legendre

function Pl(cos(θ)), which leads to:

ψsc(~r) =
∞∑

l=0

Rl(r)Pl(cos(θ)). (2.3)

Solving the radial Schrodinger equation for r→∞, we obtain the radial solution Rl

given by:

Rl = Al
1

kr
sin(kr − π

2
l + δl). (2.4)

Here δl is the phase shift between the scattered and the unperturbed wave caused

by the scattering potential, it contains all information relevant for the scattering

process, Al is the amplitude. By inserting eq.(2.4) in eq.(2.3) and expanding ψinc

into spherical waves as well, one can get the following expression for the scattering

amplitude:

fk(θ, k) =
1

2ik

∞∑

l=0

(2l + 1)(e2iδl − 1)Pl(cos(θ)). (2.5)
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Now one can integrate eq.(2.2) using eq.(2.5) and obtain:

σ(k) =
4π

k2

∞∑

l=0

(2l + 1) sin2(δl). (2.6)

We note that for Bosons, only even l = 0, 2, 4, ... numbers are authorized and

that for Fermions only odd l = 1, 3, 5... numbers are allowed. This means that in

the ultracold regime, where the s−scattering waves dominate, pairs of bosons can

collide, and pairs of fermion in the same quantum state can not collide and form an

ideal gas [22]. In our experiment, in order to have two 6Li atoms to collide, we have

to create a mixture of two hyperfine states of 6Li to enable collisions (see section 5).

Also, the centrifugal barrier causes the scattering phase to scale like δl ∝ k2l+1 [23], if

the momentum is small compared to the interatomic potential, scattering processes

with l > 0 are suppressed for k → 0, which is fulfilled in the ultracold regime.

For the case of purely s-wave scattering l = 0, we have the following scattering

amplitude:

f0 =
1

2ik
(e2iδ0 − 1). (2.7)

By defining the scattering length a as:

lim
k→0

tan δ0

k
= −a, (2.8)

and using δ0 ≈ ka we arrive at the final result for the scattering amplitude:

f0 = − a

1 + ika
. (2.9)

with the energy independent cross section:

lim
k→0

σ0(k) = 4πa2 (2.10)

Cross section

The cross section is directly related to the scattering amplitude through eq.(2.2),

and a general expression for cross section energy is given in [24]:

σ(k) =
4πa2

1 + k2a2
(2.11)
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In a weakly interacting gas, k2a2 � 1 this leads to a total elastic cross section of

σ = 4πa2. For the strongly interacting case with k2a2 � 1 so-called unitary limit,

the cross section is σu = 4π
k2 .

Identical particles

Previously, we considered the particles that collide to be distinguishable, however

identical particles have to be treated differently. If the particles are identical, the two

scattering processes shown in Fig. 2.1 can not be distinguished, and their scattering

amplitude can interfere. For fermions, it results in an elimination of the partial wave

with even numbers, and for bosons an elimination of the partial waves with an odd

number. The cross sections that are not annihilated are multiplied by a factor 2.

Consequently, the cross section for bosons in the ultra cold regime is σk = 8πa, and

for fermions there are no collisions.

pi

pf

-pi

-pf

pi

-pf

-pi

pf

θ

π-θ

Figure 2.1: The two equivalent collisions processes for a pair of identical particles.

2.2 Feshbach resonance

In this section, we discuss the origin and effect of Feshbach resonance, responsible

for the formation of diatomic molecules[25, 26]. To change the interaction strength,

we need to be able to tune a parameter in the inter-atomic potential, this is ac-

complished by coupling two scattering channels, one is open, where the collisions

are energetically allowed, and one is closed, where a bound state ϕ(r) exists (see

Fig. 2.2), and this channel is energetically forbidden.
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Figure 2.2: Schematic representation of the open channel and the closed channel

with a molecular bound state, and ∆ the gap between the two channels.

The interatomic potential depends on the internal state of the atoms, different

internal states lead to different potentials [27]. In our case, 6Li atoms are prepared

in a mixture of the two lowest hyperfine states |F = 1
2
,mF = ±1

2
> (see Fig. 4.5).

According to the spin 1/2 coupling, we have two cases, the triplet state with

a symmetric spin arrangement MF = −1, 0, 1 and a singlet state with anti-

symmetric spin arrangement, MF = 0. In this configuration a Feshbach resonance

occurs when two atoms scatter in the singlet state potential (open channel), which

is the only one energetically allowed. Then the triplet state that has a non zero

magnetic momentum is brought closer to the singlet state by applying a magnetic

field (see Fig. 2.3). Only the triplet state will be shifted because of non-zero value

of magnetic momentum MF .
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ΔμB

r0

interatomic distance

open channel, VS

bound state

closed channel, VT

BB0

E

a

B

Figure 2.3: Schematic representation of two box potentials, one open channel (triplet

state) and one closed channel(singlet state) with a molecular bound state. The

triplet state (non zero magnetic momentum) can be brought closer to the singlet

state using an external magnetic field. The total energy of the closed channel changes

with ∆E = µ∆B. When the bound state of the closed channel meet the continuum

of the open channel, the scattering length a diverge. A similar effect has been

demonstrated in section A.

Simple model for Feshbach Resonances

In the following model, we consider two identical atoms, with mass m. The vector

base is composed of the open channel |o〉, and the closed channel |c〉. The wave

function of the atoms is defined by |ψ〉 = ψo(r)|o〉+ψc(r)|c〉, with ψo(r) and ψc(r) the

amplitudes in the open and closed channels. The model is defined by the following

equation:

E|ψ〉 =
h̄2

m
(−∇2 + v̂)|ψ〉, (2.12)
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where the potential v̂ is defined as:

v̂ =







Vo Ω

Ω Vc(B)


 , r < r0




0 0

0 ∞


 , r > r0

(2.13)

Further details can be found in [28]. In more technical terms, a Feshbach resonance

is caused by second order coupling of an open with a closed channel, induced by

hyperfine interaction [15]. In eq.(2.13), the coupling is represented by the frequency

Ω. In the case of a square well, eq.(2.12) can be solved analytically and results in

an expression for the scattering length as a function of the magnetic field [28]:

a = abg

(
1− ∆B

B −B0

)
. (2.14)

The background scattering length abg results from the scattering open channel poten-

tial. The position of the resonance is B0, and ∆B ∝ g2

∆µabg
is the width of resonance

depending on the square of the coupling strength g between the two channels.

6Li Feshbach Resonances, A 6Li spin mixture of the two lowest hyperfine states

|1〉 and |2〉 (see Fig. 4.5) exhibits two s-wave Feshbach resonances, a very broad one

at 834G (Fig. 2.4) that we are using in this experiment [29], and a narrow one at

534G [30, 31].
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Figure 2.4: Plot of the magnetic Feshbach resonance of a |F = 1
2
,mF = ±1

2
〉 spin

mixture of 6Li [32]. The red shaded zone is the range of interactions studied in our

experiment.



Chapter 3

Degenerate quantum gas

We can associate to every particles the thermal de Broglie wavelength:

λdB =

√
2πh̄2

mkBT
(3.1)

This length λdB represents the expansion of the wave packet of the particle. When

the temperature is high enough, the de Broglie wavelength is negligible, and we

can consider the particle classically. At low temperature1, the wave packet of the

particles start to overlap and the classical treatment is not sufficient. To quantify

the overlapping of the wave packets, we define the phase space density (PSD):

D = λ3
dBn (3.2)

where n is the density of particles. When D ≈ 1 the nature of the particles, either

bosons or fermions will lead to different behaviour. The bosons will condense into

the ground state of the trap and eventually form a BEC, and the fermions will fill

up the different energy level of the trap (see Fig. 1.1), this has been observed in

[13], where they produce a mixture of a Fermi sea of 6Li and a BEC of 7Li.

1T=1µK corresponds to λdB=300nm

21
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3.1 Gas of bosons

The Bose-Einstein condensation is a beautiful example of a physical phenomena

first developed theoretically, leading to some effects beyond belief, allowing us to

see the fundamental nature of matter in a fascinating new state of matter where all

the particles seem to become one. In this section, we start with a brief overview

on the history of the Bose-Einstein condensation. Then, we discuss the notion

of distinguishability of particles, and the implication on the way we count them.

Finally, we expose the fundamental results of the Bose-Einstein condensation in the

non-interaction case, that will be used as a starting point for the study of the 6Li

molecular Bose-Einstein condensate (mBEC).

3.1.1 History

The interpretation of the black body radiation has been the beginning of the era

of quantum physics. Indeed, to understand the distribution of the spectrum of

light at equilibrium, Planck introduced the idea of the quanta of energy. Different

demonstrations of the Planck’s formula have been found. Among them, the idea

of Satyendra Nath Bose, that considered the light as a gas of identical particles.

By looking for the most probable energy distribution of this gas made of identical

particles, Bose found the Planck’s distribution. Einstein found that approach in-

teresting, he helped Bose to publish [6], and generalised the idea to the ideal gas,

known as the Bose-Einstein distribution. The Einstein’s formulas established in his

second article [33], lead to an interesting effect. If V (volume) and N (number of

atoms) are constant, when the temperature T < Tc, with Tc the critical temperature,

atoms are transferred into the ground state (i.e. lowest energy state). Moreover,

N0 the number of atoms in the ground state tends to N if the temperature is low

enough. At this time, physicists, Einstein included, did not believe in this effect, at

such a low temperatures people thought that matter could only exists as a gas or

a liquid. Moreover, this interpretation appears in the early stage of the quantum
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physics theory, and the Schrödinger’s equation only arrived one year after [21].

3.1.2 How to count indistinguishable particles?

To establish the energy distribution of an ideal gas, we need to count the number

of distinct microscopic states associated to a macroscopic state of the gas. For

Einstein, the distinct microscopic states are defined by the number of atoms in each

domain ∆i with an energy Ei between Ei and Ei + ∆Ei. Each domain has gi cells ,

corresponding to different quantum states. Now, instead of having distinguishable

particles that we can label, we define indistinguishable particles without labels. In

Fig. 3.1, we illustrate the counting of microscopic states for distinguishable and

indistinguishable particles, considering 3 particles spread over two cells.

1 2 3

1 2 3

1 2 3

2 3 1

3 1 2

2 3 1

3 1 2

1 2 3

Distinguishable Indistinguishable 

Figure 3.1: Microscopic state of 3 identical particles spread into two cells. The left

part corresponds to the case of distinguishable particles, and particles are labelled by

a number. The right part of the picture corresponds to the case of indistinguishable

particles.

The number of microscopic states is different for the indistinguishable and dis-
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tinguishable particles, respectively 4 and 8. Another important idea is shown in

that figure, the number of microscopic states where all particles are in the same cell

are equal. However, when particles are spread in different cells, the permutations

of distinguishable particles lead to a greater number of microscopic state than the

number of microscopic states of indistinguishable particles. Therefore, the relative

weight of particles situated in the same cell in comparison with particles spread in

different cells is also different. For distinguishable particles it is 1/4, and for indis-

tinguishable particles 1/2, this gives a hint why bosons that are indistinguishable

tend to accumulate in a same cell.

3.1.3 Bose Einstein condensation of an ideal gas

First, let’s consider indistinguishable atoms without interaction, in contact with a

thermostat. We want to find the most probable macroscopic state for a fixed atom

number and fixed total average energy:

∑

i

Ni = N
∑

i

NiEi = E (3.3)

Einstein calculated the number of distinct microscopic states corresponding to a

macroscopic state defined by the set of {Ni}, with Ni the number of atoms in

the domains ∆i, supposing indistinguishable particles. Then, he looked for the

maximum of this number with the constraints eqs.(3.3). Consequently, the mean

occupation number ni of the state i is given by the Bose-Einstein distribution:

ni =
1

exp[ εi−µ
kBT

]− 1
, (3.4)

where T is the temperature of the thermostat, and µ the chemical potential fixed

by the normalization
∑

i ni = N . In the denominator, the −1 term is crucial,

when the term in the exponential tends to 0 (lowest energy state), consequently the

exponential term will tend to 1 and the density will diverge, which is fundamentally

different from the classical Maxwell-Boltzmann distribution.
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Now, let’s consider an harmonic trap potential Vext = 1
2
m(ω2

zx
2 +ω2

zy
2 +ω2

zz
2) of

an atom of mass m, the ωi are the trapping frequencies in three spatial directions.

Using this trapping potential, we define the Hamiltonian of the system:

Hsp =
p2

2m
+ Vext(r) (3.5)

with the eingenvalues :

εnxnynz =

(
nx +

1

2

)
h̄ωx +

(
ny +

1

2

)
h̄ωy +

(
nz +

1

2

)
h̄ωz, (3.6)

where ni = 0, 1, ... is the energy level quantum number. At temperature T , the total

number of particles is given by:

N =
∑

nxnynz

1

exp[β(εnxnynz − µ)]− 1
, (3.7)

where β = (kBT )−1. Now, we separate the lowest state ε000 from the sum and call

N0 the number of particle in this state. The chemical potential is equal to the energy

of the lowest state, µ→ µc = 1
2
h̄(ωx + ωy + ωz) in order to maximize the number of

thermal atoms NT = N −N0:

NT,max =
∑

nxnynz 6=0

1

exp[β(εnxnynz)]− 1
, (3.8)

when N → ∞, the condition kBT � h̄(ωxωyωz)
1/3 (semi-classical approximation),

and the sum can be replaced by an integral. Moreover knowing the density of state

of an ideal gas in an harmonic trap g(ε) = ε2/(2h̄3ω3
ho) we can write:

NT,max =

∫ ∞

0

ε2dε

2h̄3ω3
ho(exp(βε)− 1)

, (3.9)

where:

ωho = (ωxωyωz)
1/3, (3.10)

the average harmonic trapping frequency. We take eq.(3.9) and set NT = N , i.e.

the critical point of the Bose-Einstein condensation, we have the following relation

for the critical temperature [34]:

T 0
c =

h̄ωho
kB

(
N

ζ(3)

)1/3

, (3.11)
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where ζ(x) is the Riemman’s Zeta function, ζ(x) =
∑∞

1 k−x. The peak phase

space density of an ideal gas in an harmonic trap is given by:

D(T ) = N

(
h̄ωho
kBT

)3

(3.12)

Then, we calculate the phase space density at the critical temperature Tc:

D(Tc) = N

(
h̄ωho
kBTc

)3

= ζ(3) ≈ 1.202, (3.13)

this represent the condition for the apparition of a BEC. Using eq.(3.9) and the

normalization condition N0 + NT = N , we obtain the condensate fraction against

the temperature (see Fig. 3.2):

N0

N
= 1−

(
T

T 0
c

)3

. (3.14)

These results are very useful to evaluate the critical temperature knowing the

atoms number, and will be used in this thesis as a reference point. However, due

to the role of the inter-atomic interactions that are a very important parameter in

the 6Li mBec, this simple model is not accurate enough and we will discuss more

sophisticated model suitable for the study of a highly interacting BEC.
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Figure 3.2: Condensate fraction as a function of T/T 0
c . Circles are the experimental

results of Ensher et al(1996). While the dashed line is eq.(3.14). We notice a

deviation from the theoretical curve, which is due to the inter-atomic interactions,

weak enough in that case to be close to the theoretical model.

Wave function of an ideal gas BEC. For a BEC, the wave function is defined

by the lowest energy state (nx = ny = nz = 0) of a single particle function and is

given by:

φ0 =
(mωho
πh̄

)3/4

exp
[
−m

2
(ωxx

2 + ωyy
2 + ωzz

2)
]
, (3.15)

where we can define the length of the harmonic oscillator aho =
√

h̄
mωho

. And the

density distribution is given by n(r) = N |φ0(r)|2. For typical value of trapping

potential in our experiment, the harmonic oscillator length for 6Li2 molecules is

aho = 3µm.

Finite size effect correction. Due to the finite size of the system the thermody-

namic is never reached even if the number of atoms is N ≈ 107. Therefore, in [35]

they work out a finite size correction given by:

N0

N
= 1−

(
T

T 0
c

)3

− 3ωζ(2)

2ωhoζ(3)2/3

(
T

T 0
c

)2/3

N−1/3, (3.16)
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where ω is the arithmetic average of the trapping frequencies. The correction scales

like ∝ N1/3 and become relevant when we approach the critical temperature. In

Fig. 3.3, we plot the correction for N= 5.105 atoms, that corresponds to the number

of atoms that we have in our experiment, the correction small and mainly visible

near the phase transition.

0 0.2 0.4 0.6 0.8 1
T/T0

c

0

0.2

0.4

0.6

0.8

1

N
0/N

Figure 3.3: Solid line represent the thermodynamic limit and the dashed line the

finite size effect correction for N= 5.105.

3.1.4 The chemical potential µ

A key parameter in Bose Einstein condensation is the chemical potential [36]. Be-

cause this parameter is often a source of confusion, this section describes the chemical

potential with a particular attention on its meaning.

Intuitive picture of the chemical potential µ for a non-interacting gas. In

thermodynamics, when a system exchanges energy and particles with a reservoir,

its internal energy U changes following the thermodynamic identity:

dU = TdS − pdV + µdN. (3.17)
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Where T is the temperature, S the entropy, p the pressure, V the volume and N

the atom number. From eq.(3.17) we obtain the chemical potential µ:

µ =
∂U

∂N
|S,V . (3.18)

The chemical potential µ, is the energy difference, when a particle is added or re-

moved from the system, with S the entropy (constant) and V the volume (constant).

In order to have a better understanding of the chemical potential, let’s consider a

system with equally spaced energy level by the energy ε, with the ground state en-

ergy equal to zero. We assume that we have two distinguishable particles, A and B,

and that the energy of the system is 2ε. Therefore, there are 3 microstates available,

and the entropy is simply calculated with S = kBln(3).

A B

2ε 0

0 2ε

ε ε

Now, if a particles is added, the number of available microstates is 6, the entropy

becomes S ′ = kBln(6), but according to the definition of the chemical potential

eq.(3.18), the entropy should remain constant.

A B C

2ε 0 0

0 2ε 0

0 0 2ε

ε 0 ε

ε ε 0

0 ε ε

Therefore, the new particles should bring an energy of −ε to keep the number of

microstates to 3, and S = S ′. At the end, the chemical potential is µ = −ε, the

energy of the system decreases as a particle is added.
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The chemical potential µ for an ideal Bose Gas. Now, we will describe the

meaning of the chemical potential for a BEC. For an ideal BEC at T = 0, all atoms

are in the ground state with the energy ε = 0. There is only one micro state,

therefore the entropy S = kB ln(1) = 0, then ∆U = 0, ∆S = 0, thus µ = 0. Now,

let’s consider a gas with a finite temperature below the critical temperature. If a

particle is added at very low temperature, the probability of being added in the

ground state is very high, then the entropy should increase by a small amount, the

system should be allowed to decrease slightly its energy by cooling, therefore, the

energy needed to compensate the chemical potential is very small in amplitude and

negative. If the temperature increases, the number of microstates increases, and µ

becomes more negative.

3.2 Fermi gas

For fermions, according to the Pauli exclusion principle, two fermions cannot be

in the same quantum state, the corresponding distribution at finite temperature is

given by the Fermi-Dirac distribution:

ni =
1

exp[ εi−µ
kBT

] + 1
, (3.19)

the difference with the BE distribution is the +1 at the denominator, this implies

an average occupation number ≤ 1. Here µ is the energy of the highest occupied

state, so-called Fermi energy EF , and is value is given by [15]:

EF = h̄ωho(6N)1/3, (3.20)

where ωho = (ωxωyωz)
1/3, and N the number of fermions. Using the Fermi energy,

we define the radius of the cloud in the trap:

RTF =

√
2EF
mω2

ho

= aho(48N)1/6, (3.21)

where aho =
√

h̄
mωho

the length of the harmonic oscillator. We can also define the

largest momentum pF = h̄kF =
√

2mEF , where kF is the Fermi wave number.
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Locally, it is defined by pF (r) = h̄kF (r) =
√

2mεF (r) = h̄(6π2nF (r))1/3, where

εF = µ(r, T = 0) = EF − V (r). At the center of the trap where V (r)) = 0, we can

calculate the density:

n(0) =
2√
3π2

√
N

a3
ho

, (3.22)

and the wave number:

kF = (6π2n(0))1/3, (3.23)

which has the dimension of the inverse of a length and proportional to the separation

between particles. To classify the different regime, we use the quantity 1/kFa, which

is the ratio between the particle separation between particles and the scattering

length, and can be positive or negative. The different phase are summarized in

Fig. 3.4.

T/TF

1/kFa

0.6

1.2

0

2 1 0 -1 -2

Thermal
Molecules

Thermal
& 

condensed 
Molecules

Strongly
interacting
fermions

Weakly
interacting 
fermions

BCS Superfluid
Resonnance 
superfluid

Figure 3.4: Phase diagram for fermions inspired from [15]. The dotted line represent

the line of critical temperature Tc, and the dashed line the line where starts the

formation of pairs of fermions. The shaded area represents the zone of interest for

this thesis.
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3.2.1 BCS state

In 1957, Bardeen-Cooper-Schrieffer(BCS) were able to explain the superfluidity by

the formation of pairs of electrons (Cooper pairs) [17]. In that case, the interac-

tions between fermions is weakly attractive and the scattering length is negative.

These pairs are much larger than the interparticle spacing, consequently a strong

spacing overlap, the binding energy is calculate to be ∆ = 2kBTDe
−1/ρF |V | where

ρF = mkF/2π
2h̄2 is the density of state at the Fermi energy [37], TD the Debye

temperature, and V the potential between the particles (phonon-mediated electron-

electron interaction). To realise a BCS state with cold atoms, a spin mixture of two

different hyperfine states of 6Li is realised, and the potential is created by sweep-

ing the Feshbach field to the negative scattering length side where the interaction

becomes attractive, i.e. on the BCS side.

3.2.2 BEC-BCS crossover

The crossover between the molecular BEC and BCS state represents a very inter-

esting subject of study, in that regime the interactions are very high because the

scattering length diverges, and the pair size of comparable to the interparticle dis-

tance, this properties are shared with some High-Tc superconductors [38, 39] or

system like neutron stars. Also, when the scattering length diverges, the only im-

portant length becomes the interparicles length, and the relevant energy length is

the Fermi energy EF , the system is called universal [40]. It means that the following

quantities related to the energy, the mean energy of the gas, the binding energy

of the pairs and the temperature must be related to the Fermi energy by univer-

sal numerical constants, and the size of a pair of Fermions is equal to an universal

constant times the interparticle distance [15].
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3.2.3 Thermal and condensate molecules

In this thesis the work is focused on the production and analysis of Feshbach

molecules. There are three ways to produce Feshbach molecules; the photoasso-

ciation [41, 42] where two colliding atoms are optically excited to a bound state, the

sweep of the magnetic field from weakly paired molecules (BCS side) to the tightly

bound molecules (BEC side), and finally the one that we use in our experiment,

the three body recombination [43, 44]. In the last method, the magnetic field is

kept constant and set on the BEC side of the Feshbach resonance where a molecular

state exists. During the collisions of three particles, two can form a molecule and

the other one take the excess of energy, on the other hand a particle can also collide

with a molecule and dissociate it. These processes are summarized in the following

equation [45]:

Nmol

Nat

= De−Eb/kBT (3.24)

where D is phase space density, and Eb the binding energy of the molecular bound

state defined by [46]:

Eb =
h̄2

ma2
(3.25)

To be valid, the scattering length must be larger than the extent of the Van der

Waals potential, with the characteristic distance:

reff =

(
mC6

h̄2

)1/4

. (3.26)

For lithium, the Van der Waals coefficient is 1.3340× 10−76Jm6 [47], giving a reff =

62.5a0. For the values of scattering length smaller than reff, a correction can be

found [48]:

Eb =
h̄2

m(a− a)2
, (3.27)

with

a =
Γ(3/4)

2
√

2Γ(5/4)
reff ≈ 0.478reff. (3.28)
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Where Γ(x) is the mathematical Gamma function. The properties of the lithium

molecular bound state have been studied in [49, 50]. To cool down the molecules

to degeneracy temperature, we use evaporative cooling (see section5.4). A high

collision rate is necessary for the thermalisation, which depends on the trapping

frequencies, the scattering length between molecules and on the molecules density.

Compared to the single atoms, the density of the molecules is divided by two, the

scattering length between molecules is given by [50]:

am = 0.6a. (3.29)

According to [50], the process where a tightly bound molecules is created after a

collision between a molecules and a particles is suppressed in the case of fermions

(6Li in our experiment).



Chapter 4

Basics of cold atoms physics

In this chapter, we present the basic concepts necessary to understand the building

blocks of our experiment. We first discuss the nature of the atoms that are used,

then discuss the way the atoms interact with a magnetic field. Afterwards, we

describe their interaction with an electric field through the concept of dipole force

[51], which allow us to trap atoms in a deep attractive potential or repeal them with

a repulsive potential. It is followed by a discussion on how pairs of atoms interact,

and finally we will discuss the phenomena of Feshbach resonance[28], allowing us to

control the interaction between atoms.

4.1 Alkali atoms

In the past twenty years, the development of cooling methods has lead to an original

way of reaching the ultra-low temperature regime [3, 52], mostly by using exchange

of momentum between light and matter[51, 53, 54] and evaporative cooling methods

[55] to reach Bose-Einstein condensation. These cooling methods require powerful

laser source. The most reliable and powerful laser sources are in the visible or

near infra-red spectrum range. Therefore, on an experimental point of view, the

choice of the atoms has been naturally oriented toward alkali atoms that have an

electromagnetic spectrum in that range. Moreover, the alkali metals share a common

35
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property of having one electron unpaired on their outer shell. We remind that

electrons are fermions, consequently they respect the exclusion principle of Pauli,

two electrons cannot have the same quantum state |n, l,ml,ms> where:

n = 1, 2, ... l = 0, 1, ..., n− 1 ml = −l, ..., l, ms = −1/2,+1/2, (4.1)

(principal, azimuthal, magnetic, spin numbers respectively). First, we introduce the

weakly relativistic Hamiltonian for an hydrogen atom. This Hamiltonian comes from

the Dirac’s relativistic equation, that satisfies the postulate of quantum mechanics

and special relativity. If we look at the typical constants of the system, we can

define a typical velocity for the lowest level of the hydrogen atom with, v = e2

h̄
that

we now compare to c, the speed of light to give α = e2

h̄c
= 1

137
, the fine structure

constant which is � 1, therefore the weakly relativistic regime is justified. The

weakly relativistic Hamiltonian is given by [27, 56]:

H0 = mec
2 +

P2

2me

+ V (r)
︸ ︷︷ ︸

H0

− P4

8m3
ec

2
+

1

2m3
ec

2

1

r

dV (r)

dr
L.S

︸ ︷︷ ︸
WSO

+
h̄2

8m2
ec

2
∆V (r) + ... (4.2)

In addition of the H0, we are going to give a particular attention to the term WSO,

the physical meaning of this term is relativistic. The Lorentz boost deforms the

electric charge distribution of the valence electron, creating a net magnetic field

that interacts with its spin, so called spin-orbit interaction. Its relative intensity is
WSO

H0

≈ α2. We define the fine structure operator Ĵ = L̂ + Ŝ, the eigenstates are

now written as linear combination of |n, l, s, j,mj >. To get the expectation value

of the spin-orbit interaction we use :

〈l s j mj|L̂.Ŝ|l s j mj〉 =
1

2
〈l s j mj|Ĵ

2 − Ŝ
2 − L̂

2|l s j mj〉

=
1

2
[j(j + 1)− l(l + 1)− s(s+ 1)] (4.3)

Finally, we are going to consider the interaction of the magnetic moment of the

valence electron with the magnetic moment of the nucleus. This effect is approx-

imatively 2000 times weaker than the fine structure effect. However, this level of
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accuracy is needed for cold atoms experiments. We define the hyperfine structure

operator F̂ = Î + Ĵ, with Î, the spin observable of the nucleus. The operator F̂

is diagonal in the |n, l, s, j, i, f,mf >. The corresponding value of the hyperfine

interaction is :

〈l s j i f mf |̂I.Ŝ|l s j i f mf〉 =
1

2
〈l s j i f mf |F̂

2 − Î
2 − Ŝ

2|l s j i f mf〉

=
1

2
[f(f + 1)− i(i+ 1)− s(s+ 1)] (4.4)

However for alkalis atoms, the term H0 is more complex, if the atom has N electrons,

the Coulomb potential of a charge Ze gives us:

H =
N∑

i=1

[
h̄2

2m
∇2
i −

Ze2/4πε0
ri

+
N∑

j>i

e2/4πε0
rij

]
. (4.5)

The first term is the kinetic energy, the second the potential energy for each electron

in the Coulomb field of the nucleus of charge Z. The term including the denominator

rij = |ri−rj| is the electrostatic repulsion between the electrons i and j. However for

atoms with Z>1, this equation can’t be solved analytically. A first approximation

called the quantum defects [57] gives a good approximation of the energy level of

the outer electron:

E(n, l) = −hc R∞
(n− δl)2

, (4.6)

where δl the quantum defect number, R∞ the Rydberg constant and n the principal

quantum number. Now if we want to consider all the electrons, an other approxi-

mations have to be made. In a closed shell, for a given l the sum of all the ml values

will give zero. This implies a total angular momentum L = 0 for closed shells. The

charge has a spherical symmetry, thus the interaction between the subshells and

the valence electrons also have a spherical symmetry. The potential is then approxi-

mated by an effective central potential, the Hamiltonian is then given by eq.(4.7)[56],

and this approximation is called the central field (CF) approximation.

H0 =
p2

2me

+ Veff(r), (4.7)
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with p the momentum of the valence electron, me its mass and Veff the effective

central potential (Fig. 4.1).
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Figure 4.1: Central effective potential in the central field approximation. The blue

dotted line represents the repulsive centrifugal barrier (kB × 7mK for lithium [58]).

The red dotted line represents the attractive potential. The black line is the central

effective potential. Due to the small number of electron in the 6Li, the screening is

relatively small.

In our experiment, we use two species, the Lithium 6 and the Caesium 133, but

in this thesis we are going to mainly discuss the 6Li. The energy levels are of the

ground state and excited states used in the experiment are described in the following

figure:
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Figure 4.2: Diagram of the ground and 2P excited states of 6Li. Splitting energies

are not to scale. D1 line = 670.993421nm and D2 line = 670.977338nm. Numbers

from [59].

4.2 Interaction between atoms and a magnetic

field

Each of the hyperfine energy levels (F) have a degeneracy of 2F+1. To break the

degeneracy, we apply an external magnetic field Bz along a specific direction (the
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z-axis) called the quantization axis. This magnetic field interacts with the magnetic

moments (I,L,S) of the atoms (see Fig. 4.3). The Hamiltonian of this interaction is:

HB = −µB
h̄

(gSS + gLL + gII).B

= −µBB
h̄

(gSSz + gLLz + gIIz), (4.8)

projected on the atomic quantization axis. Where gS, gI and gL are respectively the

g-factors of the electron spin, nuclear, and electron orbital. In eq.(4.8), the amplitude

of the Hamiltonian depends on the strength of the magnetic field. We can separate

the problem into three regimes: low field of Zeeman regime, where the magnetic

field is treated as a perturbation; high field or PaschenBack regime, where the

projection of the magnetic field on the z-axis Bz is large and the hyperfine structure

becomes the perturbation. Finally, the intermediate or Breit-Rabi regime where

the effects have a comparable strength. We now define the Hamiltonian including

the hyperfine structure and the coupling terms with the external fields:

Hhfs =
Ahfs

h̄2 I.J− µBB

h̄
(gSSz + gJJz + gIIz), (4.9)

where Ahfs is the magnetic dipole constant. We can neglect the term with µI as it

is ≈2000 times smaller than the two others [60]. There is a analytical solution to

diagonalise this Hamiltonian in the subspace of l = 0. This give a good approxi-

mation for the high and low field regime. However, in our experiment we use the

whole range of magnetic field intensity during high field imaging (see section 5.5.4)

of the atomic cloud and the determination of the inter-atomic interaction strength.

Therefore, a numerical solution is outlined here. The basis used for our calculation

is |l s j mj i mi〉. We rewrite the hyperfine term of the Hamiltonian as:

I.J = IzJz +
1

2
[I+J− + J+I−] , (4.10)

so it can be applied to the chosen basis. However, the operators Lz and Sz are

not diagonal in that basis. The basis is then written as a linear combination of
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|l s j mj i mi〉, using their completeness relation:

Lz|l s j mj〉 =
∑

ml,ms

ml|l s j mj〉〈l ml s ms||l s j mj〉︸ ︷︷ ︸
CB1

, (4.11)

where CB1 is a Clebsch-Gordan coefficient. By applying another bra to eq.(4.11), we

find another value of the matrix and the corresponding Clebsch-Gordan coefficient.

〈l ml j
′ m′j|Lz|l s j mj〉 =

∑

ml,ms

ml〈l ml j
′ m′j||l s j mj〉︸ ︷︷ ︸

CB1

〈l ml s ms||l s j mj〉︸ ︷︷ ︸
CB2

,
(4.12)

This allow us to calculate the energy levels of the 6Li atoms depending on the

magnetic field in Fig. 4.4 and Fig. 4.5.
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Figure 4.3: Diagram of the ground state and the 2P excited states of 6Li, the coloured

lines represent the splitting of the hyperfine structure in the presence of a magnetic

field B. Energy splitting is not to scale.
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4.3 Interaction between atoms and light

In this section, we discuss the effect of light on atoms. The light can interact with

atoms in a conservative and a dissipative way. The conservative force is called

dipole force, and is due to the interaction of the electric dipole induced by the

light with the light field. This interaction causes a change in the potential energy

of the atom (AC Stark Shift[61]) depending on the intensity and detuning of the

light. The dipole force is used to draw a potential landscape to trap the atoms (see

section 5.4.2). On a other hand, the scattering force which is dissipative is related

to the momentum transfer between the absorption of photons and the spontaneous

emissions is an essential tool for the Zeeman slower (see section 5.2) and Magneto-

optical trap (see section5.3). We start by a demonstration to obtain the expression

of the dipole force potential using a two level-atom description and assuming that

the light field is far detuned from the atomic transition which is the case for the

trapping of neutral atoms, therefore that the population of the excited state is

negligible. From that, we derive the expression for the scattering force using the

rotating wave approximation where frequency of the light field is assumed to be

closed to the resonance, consequently involving absorption emission processes.

4.3.1 The dipole force

We start by a description of the semi-classical model, i.e. a classical description of

the atomic motion and a quantum treatment of the internal dynamics of the atom.

We first derive the expression of the dipole force without using the rotating wave

approximation, because this approximation leads to inaccuracy when the frequency

of the laser is far detuned from the atomic transition. Then, we will apply the model

to a more realistic situation with to alkali atoms. Elements of this discussion can

be found in [57, 62].

The most basic situation is to consider the interaction of linearly polarised light

travelling along the z-axis with a two-level atom as shown in Fig. 4.6.
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Figure 4.6: The two-level atom model, with the angular moment Jg = 0 in the

ground state, and Je = 1 in the excited state.

The monochromatic electromagnetic field E = εE(r) cos[ωt−φ(r)]1, with a linear

polarization ~ε along the z-axis and a frequency ω couples the ground state |g, Jg = 0〉
to the excited state |e, Je = 1,mz = 0〉. We introduce the detuning ∆ = ω − ω0,

where ω0 is the resonance frequency of the transition. The operator dipole electric

D̂d.e that induce a coupling between the internal states of the atom the light is

defined by:

V̂d.e = −D̂.E(r, t) (4.13)

= d0E(r)(|e〉〈g|︸ ︷︷ ︸
σ+

+ |g〉〈e|︸ ︷︷ ︸
σ -

) cos[ωt− φ(r)] (4.14)

where we introduce the ascending and descending operator σ+ and σ-. These op-

erator mixes the ground state |g〉 and |e〉, with d0 the intensity of the coupling

depending on the transition. Now, as we are in the semi-classical approach, we can

define a momentum and a position to the atom without incorporating the Heisenberg

principle. We want to work out is the average force 〈(F(r), t)〉intern of a motionless

atom. The term average hides two different means, the first one, the average on the

stationary internal states, oscillating between |e〉 and |g〉 before reaching a stationary

value. Secondly, a trivial average on time. We define the operator force:

F̂ (r, t) = −∇
[
V̂dip.elec(r, t)

]
= D̂∇ [E(r) cos[ωt− φ(r)]] , (4.15)

1Bold font is used to define a vector.
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therefore, to get the average of F̂ , we need to work out the average on the internal

state of D̂ given by:

d(r, t) = 〈D̂〉intern = Tr
(
ρ̂(r, t)D̂

)
, (4.16)

where ρ̂(r,t) is the density matrix (2 × 2) in stationary regime. The goal of this

demonstration is to write d(r, t) with this form:

d(r, t) = α(ω)E(r, t) = d0


Tr(|e〉〈g|ρ(r, t))︸ ︷︷ ︸

ρge

+ Tr(|g〉〈e|ρ(r, t))︸ ︷︷ ︸
ρeg


 , (4.17)

where α(ω) is the polarisability. Therefore, we can write the average force eq.(4.15):

〈F̂ 〉 (r, t) = d(r, t)∇E(r, t), (4.18)

and using eq.(4.17) we can write the average force in following form:

〈F̂ 〉 (r, t) =
1

2
α(ω)∇(E2(r, t)), (4.19)

knowing that:

〈F̂ 〉 (r, t) = −∇(Vdip(r, t)) (4.20)

We finally obtain the expression for dipole potential by averaging over time:

Vdip(r) = −1

2
α(ω)E2(r, t) = −1

4
α(ω)E2(r). (4.21)

We can already, see the form of the dipole force potential depending spatially on the

intensity of the electric field. Now, to obtain α(ω), we are going to use the following

evolution equation [51]:

ih̄
dρ̂

dt
=
[
Ĥ, ρ̂

]
+ ih̄

dρ

dt

∣∣∣∣
spontaneous.emission

, (4.22)

which is the equivalent of the Schrodinger’s equation for a density matrix, where

we add a dissipative term due to spontaneous emission. We introduce the Rabi

frequency Ω:

h̄Ω = −d0E(r). (4.23)
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We assume a weak field approximation where ρgg ≈ 1 and ρee ≈ 0, this approxi-

mation is correct if Ω � ∆,Γ. The values of the dissipative terms are then given

by[62]:

ih̄
dρeg
dt

∣∣∣∣
sp

= −Γ

2
ρeg (4.24)

ih̄
dρge
dt

∣∣∣∣
sp

=
Γ

2
ρge, (4.25)

where Γ is the natural width of the excited state |e〉, and Γ−1 the lifetime of the

excited state. Moreover, we define the Hamiltonian of the the system, and suppose

that the energy of the ground state is zero. This is given by:

Ĥ = h̄ω0|e〉〈e| − D̂E(r, t) (4.26)

Now, if we insert this Hamiltonian eq.(4.26) in the eq.(4.22), we can obtain the

evolution of ρeg for example:

ih̄
dρeg
dt

= h̄(ω0 −
iΓ

2
)ρeg − d0E(r, t)(ρeg − ρee). (4.27)

There is no analytical solution to this problem. Therefore, using ρgg ≈ 1 and ρee ≈ 0,

the result of the integration of eq.(4.27) gives:

ρeg(t) =
Ω

2

[
e−i(ωt−φ)

ω − ω0 + iΓ
2

+
ei(ωt−φ)

ω + ω0 − iΓ
2

]
, (4.28)

ρge = ρ∗eg. (4.29)

The laser used for the dipole trap are far detuned from the atomic transition, i.e.

∆ � iΓ
2
, then we neglect the term iΓ

2
in eq.(4.28). Now, we can rewrite eq.(4.17)

using eq.(4.28):

d(r, t) = d02<(ρge)

= − d0

h̄∆
E(r) cos(ωt− φ(r)) (4.30)

= α(ω)E(r, t) (4.31)
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where the detuning ∆ that include both the resonant and the non-resonant term is

given by:

1

∆
=

1

(ω − ω0)
+

1

(ω + ω0)
. (4.32)

We have the following expression of the dipole potential using eqs.(4.17, 4.21,

4.28):

Vdip(r) =
h̄Ω

4∆
=

1

4

d2
0

h̄∆
I(r). (4.33)

Therefore, by using ∆ < 0 (red detuning), the atoms will be attracted by the high

intensity region. On the other hand, by using ∆ > 0 (blue detuning) the atoms will

be repealed by high intensity region.

Alkali atoms

In our case, the wavelength for the 6Li D2 line is λ0 = 671nm and the wavelength

of the dipole laser is λ = 1064 nm. Therefore, the non-resonant term of ∆ has an

influence on the results. For ∆ < 0 it reinforces the action of the 1064nm laser

by 22%, and for ∆ > 0 reduces the action of the 532nm laser (see chapter 7) by

11% on lithium. The resonant would have been neglected in the rotating wave

approximation.

Now, we consider a more realistic structure, including the interaction of the laser

with the D1 and D2 lines (see Fig. 4.2). The hyperfine structure, particularly the

one of the Lithium is very small compared to the detuning of the light field from the

resonance, therefore we only include terms of the fine structure. Using the coefficient

of Clebsch-Gordan in Fig. 4.7 we have a new expression for the detuning:

1

∆
=

1

3
(

1

∆1

+
2

∆2

). (4.34)

where ∆1 and ∆2 are the detuning of the lines D1 and D2.
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Figure 4.7: Fine structure of an alkali atom, and detuning for dipole trap calculation.

4.3.2 The scattering force

However, there is another force, the scattering force, which is time dependant on

the gradient of the phase:

fscat = −(ε.d)E [∇φ(r)] sin(ωt− φ) (4.35)

In our calculation, this force is null in the first order of 1
∆

, i.e. that we neglect iΓ/2

in eq.(4.28). Consequently, if we want the average force fscatto be different from

zero, because of the sine that appeared in eq.(4.35), the induced dipole has to be

out of phase with the field. This is done by developing the spontaneous emission

term at the second order in 1/∆:

1

ω − ω0 − iΓ
2

≈ 1

ω − ω0

− i Γ/2

(ω − ω0)2
(4.36)

However, in cold atom physics, it is common to use the rotating frame approxima-

tion, which use the fact that |∆| � ω0, i.e ∆ ≈ ∆. This approximation simplifies

the calculation if we take from the beginning:

V̂ rwa
d.e =

h̄Ω

2

[
σ̂+e

−i(ωt−φ) + σ̂−e
i(ωt−φ)

]
. (4.37)
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It allows us to find analytical solution to eq.(4.27), without supposing that ρgg ≈ 1

and ρee ≈ 0. This approximation gives the following useful quantities :

ρee =
|Ω|2/Γ2

1 + (2∆/Γ)2 + 2|Ω|2/Γ2
, (4.38)

and

ρ∗eg = −iΩ
Γ

1 + 2i∆/Γ

1 + (2∆/Γ)2 + 2|Ω|2/Γ2
, (4.39)

also developing eq.(4.35) gives us an expression for the time-averaged scattering

force :

〈Fscat〉 =
Γ

2

I/Isat

1 + (2δ/Γ)2 + I/Isat

h̄∇φ = Rsch̄∇φ (4.40)

The vector ∇φ points in the direction of the travel of the wave-front. For a plane

wave φ = k.r, therefore ∇φ = k. 〈Fscat〉 can also be written as the product of

scattering rate Rsc = Γρee and the momentum of a photon h̄k. Finally, we write the

polarisability α for the two-level atom in the rotating frame approximation:

α = i
cε0h̄Γ

2sat

1 + 2iδ/Γ

1 + (2∆/Γ)2 + I/Isat

(4.41)

where Isat is the saturation intensity defined by I/Isat = 2Ω2/Γ2, a useful quantity

often used in experimentation.



Chapter 5

Guideline to making a 6Li BEC

In this chapter, we describe the technology and methods used to achieve a 6Li mBEC.

The experiment is separated on two tables, the first one contains the lasers appendix

C providing the light for the magneto-optical trap (MOT) (see section 5.3) and the

imaging (see section 5.5), and the second one contains the main chamber where

atoms are cooled down (see Fig. 5.1). We start by the description of the lithium

oven, where the atoms are heated up (see section 5.1), then collimated and sent

through the Zeeman slower (see section 5.2), where atoms are slowed down before

arriving to the main chamber. Once the atoms arrive in the main chamber, they are

first load in the MOT (see section 5.3) and cooled down to temperature in the order

of 600µK. Then, the atoms are transferred to a deeper trap, so-called dipole trap

(see section 5.4), and evaporated while increasing the interactions between atoms to

maximize the thermalisation, the final temperature reached is around 30 − 600nK,

at these temperatures the atoms are converted to molecules and the PSD D > 1,

consequently we can observe the formation of a mBEC (see section 3.2.3). Finally,

the imaging system (see section 5.5.1) takes 3 absorption pictures to reconstruct the

density distribution of the atoms, if we are in the regime of ultra low temperatures

and most of the atoms are converted into molecules, the binding energy is set to be

low enough adjusting the scattering length so the imaging light can dissociate and

image them [63].

51
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The goal of this chapter is to give the up to date parameters and improvements

made on the experiment in order to achieve the BEC. During my PhD, I improved

the simulations and the methods to calculate the trapping frequencies of optical

dipole trap, develop an alternative method to measure the scattering length, and

also implement a better power stabilization loop of the dipole trap in order to reach

lower temperature. A new AOM controller has been designed allowing us to reach

very low power evaporation regime, therefore very low temperature BEC. Moreover,

I set up an in situ absorption imaging sequence of the density of the cloud, the

densities are studied in the next chapter (see chapter 6). Further technical details

about the initial experiment can be found in [63–65].

Figure 5.1: Overview of the main part of the experiment where the atoms are cooled

down and imaged.

5.1 Heating up the atoms

The first step is to obtain an atomic beam, this is done by heating up a lithium

chunk from Sigma-Alrich pure at 95% (see Fig. 5.2).
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Figure 5.2: Schema of the oven used to heat up the atoms.

The chunk of lithium is heated at a temperature of ∼ 700K to obtain the required

vapour pressure. The vapour pressure of a gas is defined by the Antoine equation

[66]:

log10(P ) = A− B

T + C
, (5.1)

where P is the vapour pressure, and A,B and C are known as the Antoine coefficients

and can be found in [67] for 6Li. From eq.(5.1) we can obtain the density using:

n =
P

kBT
, (5.2)

where kB is the Boltzmann constant, and the total emitted intensity Ioven:

Ioven =
nνA

4
≈ 1015atoms, (5.3)

with n the mean velocity of the atoms, A the area of the oven aperture with an atomic

density n. Moreover, a new dual species oven 6Li-133Cs has been built and soon will

replace the current one, this new double species oven is described in appendix G.

5.2 Transfer to the main chamber

Once the atoms are emitted from the oven and collimated for the Zeeman slower

part (see Fig. 5.3), their temperature reaches 700K, with a most probable velocity

at 1380ms−1. However, the capture velocity for the MOT is about 230 ms−1 [51].
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Figure 5.3: General over view of the main part of the experiment including optics.

The red focused beam starting from the right hand side illustrate the Zeeman slower

beam directed toward the oven.

Therefore, in order to reach that velocity, a resonant beam is shone to the counter

propagating direction of the atoms (see Fig 5.3). Although, as the atoms slow down,

the Doppler shift related to the velocity of the atoms changes and the laser beam

is no longer resonant. The principle of the Zeemann slower [68] is to adapt the

energy levels by means of a magnetic field to be resonant all along the path. The

effective laser detuning δ′ including the Doppler and magnetic shifts is given by:

δ′ = δ − µB

h̄
+ kv, (5.4)

where µ is the magnetic moment of the transition, B the magnetic field, δ the

detuning from the transition of an atom in the lab frame, v the velocity of the

atoms, and k the wave number. For the atomic transition and the laser beam to be

resonant, the relative detuning must satisfy δ′ = 0.

For a constant deceleration −a0 along the path of the atoms z, the velocity of



CHAPTER 5. GUIDELINE TO MAKING A 6LI BEC 55

the atoms should satisfy :

v(z) =
√
v2

0 − 2a0z, (5.5)

where v0 is the initial velocity of the atoms. Using eqs.(5.4,5.5), we obtain an

expression for the magnetic field :

B(z) =
h̄

µ

(
δ + k

√
v2

0 − 2a0z

)
. (5.6)

The value of the deceleration a0 is determined by the radiation pressure force

Fscat (see section 4.3):

ma0 = Fscat =
Γ

2

I/Isat

1 + I/Isat

h̄k (5.7)
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Figure 5.4: a) Simulation of the slowing process of the 6Li atoms in the Zeeman

slower in order to find an optimal magnetic field profile [64]. Atoms are slowed at

≈160ms−1 at 42cm, the position of the main chamber. The atoms with an initial

velocity of v >670ms−1 are not captured in the slowing process and therefore not

decelerated.b) Map of the magnetic field of the Zeemann slower, the red curve is the

theoretical plot and the blue doted line the experimentally measured field.
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5.3 First cooling in the main chamber

Once the atoms pass through the Zeeman slower, they arrive in the main chamber

(see Fig. 5.6). They are loaded in a so-called magneto-optical trap (MOT) (see

Fig. 5.9) [69], the capture velocity is ≈ 200ms−1. The cooling process of the atoms

is provided by the optical molasses, with three counter-propagating beams, pro-

ducing the cooling and repumping light. The spatial confinement is performed by

magnetic coils in an anti-Helmholtz configuration. The sequence shown in Fig. 5.5

starts by switching on all the cooling and repumping lasers for approximately 15s,

then diminishing the power of the cooling and repumping laser while increasing the

detuning, in order to compress the MOT (see section 5.3.2), reducing the tempera-

ture of the cloud from 2000µK to 600µK. The repumper light is switched off 0.3ms

before the transfer to the optical trap, to pump the atoms into the F=1/2 state. The

dipole laser is switched on 1s before the compression stage to initiate the transfer

into the dipole trap. Then the cooling/repumping lights are switched off to transfer

the atoms into the dipole trap.
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Figure 5.5: Temporal sequence of the MOT stage. First, the loading phase, the

cooler and repumper lasers are switched on for 15s, the dipole laser is switched

on at the end of the loading sequence to prepare the transfer into the dipole trap.

Before the transfer to the dipole trap, the MOT is compressed, the detuning of the

cooler and repumper is increased, and the cooler and repumper power are decreased.

5.3.1 The magneto-optical Trap (MOT)

The MOT combines the effects of the light and magnetic fields. The light slows down

the atoms through the radiation pressure force, while a magnetic field gradient is

designed to change the shape of the light force in order to push the atoms toward the

center. The light force is generated by 3 pairs of counter-propagating laser beams.

As mentioned before the light is prepared on a different table and transferred through

optical fibres with an optical aperture of NA= 0.12 to the table containing the main

chamber (see Fig. 5.6). At the end of the fibres, outcouplers with f = 10mm lenses

send the light in the main chamber and the light is retro-reflected on the other side

of the chamber. Creating a set of 6 beams in the three directions x, y, z.
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Figure 5.6: Top view of central part of the main chamber. The outcouplers send

the lights toward the center of the chamber where the MOT is loaded. At the same

time the MOT coils (dark red) are switched on to provide the spatial confinement.

When a pair of counter-propagating beams with the same |k| number close to

resonance and red detuned ω < ω0 are overlapped with an atom of velocity v, the

atoms undergo a ”molasses” force. Using eq.(4.40), we obtain (assuming kv � Γ)

:

Fmolasses(δ) = Frad(ω − ω0 − kv)− Frad(ω − ω0 + kv) (5.8)

≈ −2k
dFrad

dδ
(δ)v = −γ(δ)v.

using eq.(4.40) we obtain γ the damping coefficient:

γ = 4h̄k2 I

Isat

−2δΓ

[1 + (δ/Γ)2)]2
, (5.9)
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where the term I/Isat has been neglected in the denominator, because the va-

lidity of optical molasses requires I � Isat for the force from each beam to act

independently [57]. Now to extract a typical time scale of the process we use the

2nd Newton’s law and eq.(5.8) :

dE

dt
=

d

dt

(
1

2
mv2

z

)
= vzFmol = −γv2

z =
2γ

m
E = − E

τdamp

(5.10)

with τdamp on the order of few microseconds.

However, the radiation pressure force provides a damping but it does not trap

the atoms. To do so, a magnetic field gradient is added (see Fig. 5.7), this magnetic

field gradient shifts the Zeemann sub-levels, represented in Fig. 5.7 b) along the

x-axis. The quantization axis on this figure is chosen to be aligned with the local

magnetic field.

If an atom is moving toward the −x direction, the most probable transition is

|J = 0,mJ = 0〉 → |J = 0,mJ = +1〉, and can only be driven by σ+-light coming

from the left side. If an atom is moving toward the +x direction, the most probable

transition is |J = 0,mJ = 0〉 → |J = 0,mJ = −1〉, and can only be driven by

σ−-light coming from the right side. This creates an imbalanced radiative force and

pushes the atoms to the center. This force can be described by adding the frequency

shift due to the coils in eq.(5.8):

FMOT = F σ+

scatt(ω − kv − (ω0 + βz))− F σ−

scatt(ω − kv − (ω0 − βz)) (5.11)

≈ −2
∂F

∂ω
kv − 2

∂F

∂ω
βz

with

βz =
gµB
h̄

dB

dx
x, (5.12)

with µB the magnetic moment of the transition. The first term in eq.(5.11) is

responsible for the damping of the atoms velocity, and the second term provides the

spatial confinement.
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Figure 5.7: a) The MOT coils in an anti-Helmholtz configuration in order the create

a linear gradient of magnetic field in the x, y, z directions to induce a Zeemann shift

in the atomic energy levels. b) Principle of the MOT, an atom in the ground state

J=0 moving to -x direction absorbs a σ+ photon red-detuned of a value ∆. In the

same way an atom moving to the +x direction absorbs a σ− photon. Therefore the

atoms are pushed toward the center of the magnetic field.

Laser setup. In Fig. 5.8, we present the different atomic transitions that we need

to address for the experiment. The exact layout of the lasers on the optical table

can be found in appendix C. The frequency of a laser beam can be adjusted using

an acousto-optical modulator (AOM) [70], the light is diffracted through the AOM

and we use the first order of diffraction as the output. The amount of light and the

frequency shift going through the first order is controlled by a RF signal.
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Figure 5.8: Frequencies used in the experiment. Thin arrows add up to obtain the

frequencies represented by the thick ones. From [63].

In order to address the transitions shown in Fig. 5.8, we use 4 different lasers.

Below we give:

1. Reference: Homebuilt diode laser used for the saturation spectroscopy to

lock the frequencies of the other lasers. Total output power: 15mW.

2. Imaging: Homebuild diode laser to perform absorption imaging. Total output

power: 15mW

3. Toptica TA pro: Seed light for the homebuilt TA, and re-pumping light for

the MOT and Zeeman slower.Total output power: 350mW.

4. Homebuilt TA: Cooling light for the MOT and Zeeman slower. Total output
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power: 300mW.

All light is fibre coupled, the output powers that we achieve on the experiment

are given in the table below.

Laser Detuning (MHz) Output Power (mW)

MOT cooler -40 20

MOT repumper -40 18

Zeemann Slower Cooler -120 12

Zeemann Slower repumper -120 12

Table 5.1: Optimal values for the MOT light.

(a) (b)

Figure 5.9: a)Photograph of the 6Li MOT, containing ≈ 8 × 107 atoms. b) Atom

number against loading time, measurement done by TOF absorption imaging after

0.2ms of fall time, repeated three times.
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5.3.2 Compression stage

The lowest temperature achievable in the magneto-optical trap is reached when the

detuning of the cooling laser δ = −Γ/2 (see section 5.3.3). The compression stage

therefore consists in changing the detuning from δinitial = −40MHz to δfinal = Γ/2

(2.9MHz) within 11ms, while decreasing the power of the the cooler and repumper

light (see Fig. 5.5). During that compression phase, the temperature drops from

2000µK to 600µK. We measure the number of atoms in the compressed MOT scan-

ning the detuning of the cooling laser (see Fig. 5.10) to maximise the phase space

density (PSD), and the maximum number of atoms correspond the optimum value

of the detuning to reach the lowest temperature temperature T=600µK.
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Figure 5.10: Atom numbers against detuning of the cooling/repumping light. The

sequence is described above in Fig. 5.5. The measurements are done by TOF ab-

sorption imaging (see section 5.5.2) after 0.1ms of fall time, repeated 3 times.

5.3.3 Cooling limits

In this section, we discuss the achievable temperature limit of the MOT cooling.

The radiation force is a time average force resulting from many absorption-emission

events. When an atoms is slow enough, absorption from both sides (1D case) are
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equally probable. Moreover, when an atom absorbs or emits a photon, heating

occurs due to the photon recoil. Therefore, for each absorption-emission process,

the kinetic energy of the atoms increases by Er = 2h̄k/2m. We know that the rate

of absorption-emission process is Rsc = Γρee. Then, the rate at which an atom is

heated in a 1D MOT is :

dEheat

dt
= (2Rsc)(2Rr). (5.13)

In the same way, the cooling rate can be defined using eq.(5.8) :

dEcool

dt
= −γv2. (5.14)

Now, we can work out the steady state of such a cooling/heating system:

dEtotal

dt
=
dEcool

dt
+
dEheat

dt
= 0, (5.15)

from this equation, we extract the equilibrium velocity :

v2
eq =

4ErRsc

γ
. (5.16)

Using eq.(5.9), the equilibrium temperature is :

kBT = mv2
eq =

h̄Γ

4

(
2|δ|
Γ

+
Γ

2δ

)
. (5.17)

This limit temperature is called the Doppler temperature, reached for δ = −Γ/2

and defined by:

TD =
h̄Γ

2kB
. (5.18)

For lithium, this temperature is 141µK. However, the temperature typically achieved

in labs are much higher, in our case the temperature achieved is ≈ 600µK, the rea-

son is the overlap of the excited 2P3/2 hyperfine levels (see Fig. 4.4) that results

in a broader effective linewidth for the cooling transition, therefore higher Doppler

temperature. The proximity of the different 2P3/2 hyperfine levels also forbid the use

of sub-Doppler cooling method [51]. Currently a grey molasses [71] is being imple-

mented, to do so a laser providing cooling and repumping light is begin constructed

to reach lower temperatures during the MOT stage.
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5.4 Evaporative cooling in the main chamber

After loading and compressing the atoms in the MOT, the temperature of the atoms

is about 600µK and the atoms are in an equal mixture of |F = 1/2,mF = −1/2〉
and |F = 1/2,mF = +1/2〉 states to allow collisions, due to the fermionic nature of

the 6Li atoms, only atoms in different states can collide, therefore thermalise. The

atoms are then transferred to the optical dipole trap created by a 100W IPG laser.

The beam is focused down to a waist of 80µm in the center of the main chamber

and reflected back to the main chamber (yellow line on Fig. 5.17) to form a crossed

beam trap (see Fig. 5.11). At the same time, to enhance the thermalisation of

the atomic ensemble the Feshbach coils are switched on, in order to increase the

inter-atomics interactions in the trap. Then, after a plain evaporation time (i.e. a

hold time where the trap depth is kept constant) ≈ 1200ms, the power of the dipole

trap is decreased to start the evaporative cooling sequence [72] to reach temperature

≈ 100nK. The sequence of the evaporation is depicted in Fig. 5.12.

Figure 5.11: Projection of the potential created by the dipole trap seen by the atoms

on the (x,y) plan. The scale is in mK.
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Figure 5.12: Dipole trap sequence. After the compression of the MOT, the cooler

and repumper laser are turned off, and the atoms are transferred into the dipole trap.

After a period of plain evaporation of 1.2s, we perform forced evaporation. The first

stage of the forced evaporation is the current evaporation where we decrease the

current going into the dipole laser to lower the power of the dipole trap. Then, we

decrease the power using the first AOM driver until we reach temperature < 1µK,

then a second AOM driver is used to decrease the temperature to reach 600−50nK,

where atoms are converted to molecules and the PSD D > 1, so we observe a mBEC.

The inter-atomic interactions are set to a high value along the sequence ≈ 6000a0

to maximize the thermalisation. Once the atoms reach the desired temperature, we

take a picture using an absorption imaging method, and the Feshbach coils field is

set to the final value in a range of [700 − 800G]. The temperatures above Tc at

the different stages of the evaporation are taken using time of flight imaging (see

section 5.5.2) with 5 repetitions, and below Tc we use an in situ imaging method. We

also display the corresponding dipole trap laser power measured with powermeter

+/− 0.1mW.
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5.4.1 Evaporative cooling

The atoms are confined in an optical dipole trap (see section 5.4.2), with a depth of

U0. Therefore, to leave the trap, an atom needs an energy of :

Uatom > U0 + εkBT, (5.19)

assuming that the zero energy is at the bottom of the trap. The coefficient 0 < ε < 1

represents the fraction of thermal energy carried by the atom. The probability

for an atom to leave the trap is high, if it is situated in the tail of the Boltzmann

distribution. Evaporation cooling is equivalent to cutting off the tail of the Boltz-

mann distribution, then due to the elastic collisions, the atoms thermalize to a lower

mean temperature (see Fig. 5.13).
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Figure 5.13: Population density depending on the energy of atoms for the Maxwell-

Boltzmann (MB) distribution. The principle of evaporative cooling is to remove the

higher energy atoms, i.e. cutting off the tail of the MB distribution (blue curve),

then the atoms thermalise due to the elastic collisions to a lower temperature (red

curve).

Cutting off the tail is done by removing atoms from the trap, and the loss rate
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of a trap is defined by [73]:

Ṅ = −Nγelηe
−η, (5.20)

where N is the total atom number and η = U0/kBT the truncation parameter. Now,

we define γel the elastic collisions rate:

γel = n0σν (5.21)

where n0 is the atom density, σ the atom-atom scattering cross section and ν the

mean relative velocity of the atoms in the trap. To optimize the evaporation rate

in order to get a more efficient thermalisation, we can adjust the cross section σ

discussed in chapter 2. The rate of change of total energy of the gas is :

Ė = E(U0 + εkBT ), (5.22)

the fraction of the energy carried out can be found, using kinetic theory, to be

ε = η−5
η−4

for a harmonic trap with energy dependant cross section [72].
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Figure 5.14: a) We scan the plain evaporation time and measure the atom number

with an interaction strength of 6000a0. b) We measure the temperature at different

plain evaporation times with an interaction strength of 6000a0.
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Figure 5.15: a) We scan the plain evaporation time and measure the atom number

with no interaction strength. b) We measure the temperature at different plain

evaporation times with no interaction strength.

In Fig. 5.14 and Fig. 5.15, we see the influence of the atomic scattering length

on the temperature. In the case of a highly interacting cloud, the atoms are cool-

ing down, however if the interactions are removed the atoms temperature stays

(mainly) constant. Now, following the idea developed in [74], we can find the op-

timal truncation parameter. A formula for the ratio of the elastic collision rate vs.

the background collisions κc = γel/γbck is given by:

κc =
q

(n− 1)Γ(n+ 2, η)/Γ(n+ 2)− nΓ(n+ 1, η))/Γ(n+ 1)
, (5.23)

where Γ(n, η) and Γ(n) are the incomplete and complete gamma functions. Accord-

ing to [55, 75], q=5, n=2 for a harmonic trap, (see Fig. 5.16). And the optimum

parameter is found to be :

η0 =
n

n− 1

Γ(n+ 2)

Γ(n+ 1)
= 6 (5.24)

We summarize the temperature during the evaporation process in the following

figure:
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Figure 5.16: a)Log-log plot of the measured temperature of the atoms in µK against

the depth of the dipole trap in µK. The value of the trap depth in µK is calculated

through the simulation of the dipole trap (see section 5.4.2), giving us the relation

between the power of the dipole trap beam in Watt and the ”temperature” of the

trap in Kelvin U = cP , with c = 17.3µKW−1. b) Plot of the collision parameter

κc against the truncation parameter η. The optimum parameter for our experiment

found using eq.(5.24) gives us a value of 6, however we are experimentally in the blue

region on the figure in the range of η = [5− 6]. This is because the theory neglects

the effect of the interaction between atoms that are increased in our experiment

using the Feshbach resonance.

5.4.2 Dipole trap

In this section, we discuss the effect of the dipole trap on the atoms, we show a

simulation of the potential seen by the atoms in the main chamber (see Fig. 5.19)

when the IPG 100W laser (see Fig. 5.17) is turned on.
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Figure 5.17: Top view of the main chamber, the yellow path represents the IPG

laser. The angle formed by the laser is 13 degrees, the waist at the focus point is

80µm, and the Rayleigh length zR = 23mm. During the dipole trap sequence, the

Feshbach coils are also switched on, in orange in the figure. PD1 and PD2 are the

photodiodes for the laser stabilization, discussed in section 5.4.4.

To do so, we use eq.(4.33) and Γ = (ω0)3/3πε0h̄c
3|〈e|p|g〉|2, to obtain the poten-

tial experienced by the atoms :

Vdip = −πc
2Γ

2ω3

(
1

∆1

+
2

∆2

)
I(r) (5.25)

Where ∆1/2 are the detuning values of the dipole trap beam frequency of the spectral

line D1/2. The intensity of the laser beam I(r, z) is described in the appendix D,

given by :

I(r, z) =
2P

πw2(z)
e−(2r2/w2(z)), (5.26)

where w is waist of the laser along the propagation axis z, and P the power (W) of
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the laser. Then we combine eqs 5.25 and 5.26 to obtain:

V (r, z) = − πc2ΓP

ω3πw2(z)

(
1

∆1

+
2

∆2

)
e−(2r2/w2(z)) (5.27)

We use eq.(5.27) to simulate the crossed beam dipole trap. The angle between

the two beams is 13.2◦ determined from a measurement using absorption imaging

pictures (see Fig. 5.18). Moreover the number of atoms determined by TOF is

approximately 2.106.

13.2

Figure 5.18: Absorption image of the atoms in the dipole trap, the tails of the dipole

trap allow us to calculate the angle of the crossed beam.
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atom cloud

Figure 5.19: Simulation of the dipole potential using the parameters of the IPG

laser given in Fig. 5.17 and eqs. (5.25,5.26). The current simulation is done for a

IPG laser power P= 100W.

5.4.3 Feshbach Coils

The coils described in this section are used to control the interactions between atoms

using Feshbach resonances. This coils can produced a wide range of fields to be able

to go over the different resonances (see Fig. 2.4). This coils are arranged in a way

that they produce a homogeneous field at the position of the atoms (see Fig. 5.20).

A field of 1400G can be reached when passing a current of 400A through them. A

stationary temperature of 70◦C is reached using a water cooling system.
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Figure 5.20: Simulation of the magnetic field generated by the Feshbach coils, the

coils are set in a Helmholtz configuration in order to create a flat magnetic field in

the center of the chamber.

However, the magnetic field produced is not perfectly homogeneous. The residual

curvature of the field results in a magnetic potential. The potential is trapping

in the radial direction Fig. 5.22 and anti-trapping in the vertical direction

Fig. 5.21 for the atoms in the mF = +1/2 ground state. When the power of the

dipole trap is sufficiently high, the influence of the magnetic trapping/anti-trapping

field can be neglected, but when the atoms are in the last stage of evaporation

cooling, the magnetic field needs to be taken in account for the correct calculation

of the trapping frequencies.
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Figure 5.21: Simulation of the magnetic field generated along the vertical axis. This

will add an additional trapping/anti-trapping force depending on the internal state

of the atoms mF = −1/2 or mF = +1/2.
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Figure 5.22: Simulation of the magnetic field generated in the horizontal plan. This

will add an additional trapping/anti-trapping force depending on the internal state

of the atoms mF = −1/2 or mF = +1/2.

The current through these coils can be turned off in ≈ 1ms using FET-based

switch. However, the change of magnetic field create eddy currents in the steel

chamber, that can last for 10ms (Fig. 5.23).
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Figure 5.23: Shift of the resonant imaging frequency due to eddy currents after

switching off the magnetic coils, from [63].
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5.4.4 Stabilization of the dipole trap

In order to reduce heating in the dipole trap due to power fluctuation, the intensity

of the light is dynamically controlled by a feedback loop. The stabilization system

is described in Fig. 5.24.

 

 

 

Fluorescence 

 photodiode

IPG 100W CW
     Laser
   1064 nm

AOM box

Mirror

Beam dump

Waveplate

Brewster polariser

Lens

Glass plate

PD1

P
D

2

Switch
  box

-
+

PID

Power
amp

Gain

VCOSet  point

5(Vs- Vp)Vp

Vs

control system

Figure 5.24: Power stabilization scheme for the regulation of the optical dipole trap.

The output light of the IPG laser passes through an AOM, through the first

diffraction order. The amount of light going in the first order is controlled by a RF

signal. Then, a small amount of light is diverted toward two photodiodes to feed

the feedback loop. The intensity of light going into the photodiode is set to be just

under the saturation level of the photodiode to get the best signal to noise ratio

(SNR), then the voltage of the photodiode Vp is compared to a set point Vs using a

differential amplifier to give 5(Vs − Vp). The reason we use two photodiodes is that

the range of power for the evaporative cooling goes from 100W to 50mW. When

we reach 50mW, if we use only one photodiode, the intensity of light going to the
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photodiode is very small and the feedback loop does not work optimally because

of a bad SNR. The first one is therefore, used for the high power evaporation part,

and the other one for the low evaporation power. We use a switch box controlled by

5V signal from the control system to change from one photodiode to the other one

during the evaporation. The 5(Vs− Vp) signal is used as an error signal for the PID

controller. The output of the PID controller is then sent back to the AOM driver

and the RF signal is to control the intensity of light going into the first order of

diffraction of the AOM. The second AOM driver is used for the low power control

and the calibration is shown in Fig. 5.25.
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Figure 5.25: Output power of the dipole trap against the control voltage sent the

second AOM controller.

In Fig. 5.26, we make sure that the dipole trap is functioning correctly by mea-

surement the number of atoms over a large time range here 32s. Then, we can fit

with an exponential to extract the lifetime of the dipole trap (see Fig. 5.26). In

the case of P = 1.9W where the phase space density D ≈ 1 ( close to the BEC

transition), the lifetime is = 16s, which is good because it is bigger than the the

time of the evaporation sequence ≈ 5s.
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Figure 5.26: We measure the number atoms over time to get access to the lifetime

of the dipole trap, in this case at P=1.9W.

5.4.5 Trapping frequencies

In this section, we describe the method use for the measurement of the trapping

frequencies, which are fundamental parameters for the calculation of quantities such

as temperature, chemical potential, condensate fractions. We first discuss

the experimental methods. Using these results, the simulation of the dipole trap

potential (see section 5.4.2) and the magnetic fields potential of the Feshbah coils (see

section 5.4.3), we obtain a continuous function of the trapping frequencies (radial

and longitudinal) depending on the power of the dipole trap. The experimental and

theoretical plots are represented in Fig. 5.30 and we find a good agreement between

them.
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Figure 5.27: Representation of the two methods to measure the radial and the

longitudinal frequencies.

Trapping frequencies have been measured in two different ways (see Fig. 5.27),

for the radial trapping frequencies the most convenient method was to measure the

frequency of the breathing mode. For this method the power of the dipole trap

is decreased to the desired value for the trapping frequency measurement then,

suddenly increased to a level 20x higher then the initial power, then the size of the

cloud oscillate at twice the frequency of the trap. Experimentally, we take pictures

at different times after the intensity peak. The other method, consist in measuring

the centre of mass oscillations, and gives good results for the longitudinal trapping

frequencies. Here the power of the dipole trap is decreased to the a value below the

power we want to measure the frequency, then the power is risen again to value we

want to measure the frequency, and we scan the time that the power is risen and

pictures are taken at these different times.
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Figure 5.28: Experimental results of the trapping frequency measurement, left hand

side is the radial frequency fitted with a damped sine function, the size of the cloud

is oscillating, so-called breathing mode. On the left hand side, the longitudinal

trapping frequency, here the position of the cloud is oscillating, also fitted with a

damped sinus function.

Now, using the simulations of the Feshbach coil shown in section 5.4.3 and

section 5.4.2, we obtain the total trapping potential map in the main chamber (see

Fig. 5.29). Therefore, assuming the trap to be harmonic V (r, z) = 1/2mω2
rr

2 +

1/2mω2
xx

2, the simulated potential is fitted with a parabola f(x) = a.x2 in the

respective direction, then the theoretical trapping frequency is given by:

ωi =
√

2ai/m. (5.28)

The knowledge of the magnetic potential has a fundamental importance for the

trapping frequencies used for the in situ fitting method developed in chapter 6. The

In situ pictures are taken in the presence of the optical trap potential and Feshbach

magnetic coil and therefore need to be characterized accurately.
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Figure 5.29: Dipole trap potential and Feshbach coil potential combined in order to

calculate more accurate theoretical trapping frequencies. We see that the curvature

of the magnetic field created by the Feshbach coil is not perfectly flat, therefore the

trapping frequencies are modified.
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Figure 5.30: Plot of the trapping frequencies (radial, longitudinal) against the dipole

trap power and the trap created by the Feshbach coils. Here we plot from 0 to

150mW, the region that we are interested in to achieve condensation. The exper-

imental points are taken using the technique explained above and averaged over 3

measurements.
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5.5 Imaging

The imaging system is an essential tool to explore the properties of the atomic

cloud. In this section, we first discuss the absorption imaging, which is the principal

technique used to recover images by shining a resonant light beam on the cloud,

then the shade is recorded on a CCD camera and then analysed, allowing us to

access the spatial density distribution of the atoms. Next, we describe a method

to measure the temperature, the Time of Flight (TOF) method, and discuss its

limitations, and why using in situ imaging for low temperature is more appropriate

in our experiment. Finally, we use the frequency of the resonant imaging beam to

obtain the value of the magnetic field and via the Feshbach resonance the value of

the inter-atomic interaction of the atoms.

5.5.1 Absorption imaging

A resonant beam with an intensity of ≈ 1mW is sent on the atom cloud (see

Fig. 5.32), and the transmitted signal (depending on the absorption coefficient) is

recovered on a CCD camera [9]. Using the definition of the polarizability eq.(4.41),

we know the refractive index nref =
√

1 + nα/2ε0, where n the density of atoms,

and ε0 the vacuum permittivity. The absorption coefficient a can be calculated using

[62]:

a = 2k0Im{1 + nα/ε0} =
nh̄ω0Γ

2Isat

1

1 + (2∆/Γ)2 + I/Isat

= nσscat (5.29)

with σscat the photon-atom cross section given by:

σscat =
σ0

1 + (2∆/Γ)2 + I/Isat

, (5.30)

and σ0 the cross section at ∆ = 0 and I � Isat is given

σ0 =
h̄ω0Γ

2Isat
. (5.31)

From the absorption imaging, we need to extract spatial density profile. We use

the Lambert-Beer law describing the evolution of the intensity of the probe beam
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Figure 5.31: Top view of the horizontal imaging system. Light from the imaging

outcoupler goes in the chamber, the atom cloud absorbs a part of the light, then a

CCD camera recovers the remaining light.
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intensity through the medium (the atom cloud) with an absorption a:

dI

dz
= −aI, (5.32)

then, eq.(5.32) is integrated along the imaging axis. The integration gives us:

Iafter the cloud(x, y) = Ibefore the cloud(x, y)e−nz(x,y).σsc , (5.33)

with nz(x, y) =
∫

size of the cloud
n(x, y, z)dz, here nz is the atomic density in z-direction

that we can extract from eq.(5.33):

nz = − 1

σsc

ln
Iout

Iin

, (5.34)

we also define the optical density:

D = nσ0
1

1 + ∆
. (5.35)

For the density profiles treated in this thesis D� 1. In contrast, dispersive meth-

ods could be also used such as phase contrast imaging [76, 77], however hard to

implement in our experiment.

Experimental realisation and sequence. In our experiment we have the

option to take images along the horizontal and vertical axis (see Fig. 5.32). On the

horizontal axis we use an Allied Vision Guppy Pro camera and on the vertical axis

an Allied Vision Manta, both setup use imaging telescopes. We summarize in the

following figure the experimental set up for the imaging system:
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Figure 5.32: a) On the vertical imaging axis the MOT light and the imaging light are

overlapped using a polarising beam splitter. b) Telescope scheme used in the case of

the vertical and horizontal imaging. For vertical imaging f1 = 250mm f2 = 75mm,

with a resolution of 2.5µm, for horizontal imaging f1 = 60mm f2 = 125mm with a

resolution of 2.0µm.

The experimental sequence of the absorption imaging is depicted in Fig. 5.33

where three pictures are taken (see Fig. 5.34) and then reconstructed Fig. 5.35.
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Figure 5.33: Sequence of time of flight imaging. The imaging starts after the fall

time. The repumper can be shifted, depending if it is needed during the imaging.

Figure 5.34: During the absorption picture sequence, 3 pictures are taken, the first

with light and atoms, the second without atoms and the third one without light.

Figure 5.35: Reconstructed images from the raw data Fig. 5.34.
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5.5.2 TOF

The Time of Flight imaging technique is used to determine the temperature of an

atom cloud. It consist in releasing the atoms from the trap by turning off the dipole

trap light. Then, the atoms expands freely, we then take several pictures at different

time after the release [9, 24]. The absorption imaging is a destructive process,

therefore, to take several pictures at different releasing times, the experiment is

repeated.

Once the atoms are released, we take picture at different release times (see

Fig. 5.36).

Above Tc. The density of the cloud can be treated classically by a Boltzmann

distribution:

f(r,p) ∝ e−E(r,p)/kBT . (5.36)

Where f(r,p) is the probability of finding a particle at the position and momentum

(r,p). Using the harmonic trap frequency, the energy becomes:

E(r,p) =
p2

2m
+

1

2
mω2r2, (5.37)

the normalization of eq.(5.36) using eq.(5.37) gives us :

f(r,p) =
1

(2πσ2
r)

3/2
e
−r2

2σ2
r

1

(2πσ2
p)

3/2
e
−r2

2σ2
p (5.38)

where σr = kBT/mω
2 and σp = mkBT . Now, we want to know explore the dynamics

of the cloud after a fall time of a few milliseconds, we define r′ = r + p
m
t that we

insert in eq.(5.38), then we integrate over the momentum and we have :

f(r′) =
1

(2πσ2
t )

3/2
e
−r′2

2σ2
t (5.39)

with σ2
t = t2σ2

p/m + σ2
r . We integrate the density profiles of Fig. 5.36 along

the longitudinal and radial axis, then the fit of eq.(5.39) gives us σt, therefore the

temperature can be calculated (see Fig. 5.37).
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Figure 5.36: Atomic density of the cloud at different fall times. The fall time varies

from 0 ms to 0.5 ms.
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Figure 5.37: Sequence of time of flight imaging. The imaging starts after the fall

time.

Below Tc. The density is fit using a bimodal distribution described in details in

section 6.2.2 by the ideal gas model. Where the total density is the sum of the

condensate density n0 and the thermal density nTh integrated to give one dimension

densities function and given by:

n0(x) = max

[
15N0

Rx

(1− x2

R2
x

)2

]
, (5.40)

and a Gaussian distribution for the thermal atoms:

nTh(x) =
NTh√
2πσx

, (5.41)

where N0 is the number of condensate atom, NTh the number of thermal atoms,Rx

the radius of the condensate and σx the width of the distribution.
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Figure 5.38: The atoms are released at T < Tc, we observe of inversion the aspect

ratio.

This method is suitable to measure classic clouds where T > Tc, because when

the cloud becomes very cold, the expansion of the cloud is also very small and we

need to increase the fall time, typically 15− 25ms. In section 5.4.3, we describe the

effect of parasite eddy current that can change the transition frequency. Moreover

the influence of the residual Feshbach magnetic field which is difficult to quantify, and

in [63], it has been shown that for very low temperature the gas does not undergo

a free fall. Finally, during that time the cloud can interact with the background

gas and loses informations. Therefore, a most reliable method to obtain the atom

cloud density profile is to take in situ image, described in the next section, i.e. the

absorption imaging is performed immediately after the switch-off of the dipole trap

and the Feshbach coils. However, we are imaging molecules, so the scattering must

be chosen so that the binding energy Eb = h̄/2ma2 is not too high so they can be

dissociate by the imaging light, and we only image one of the two hyperfine state.

Therefore, the magnetic field is set between 700G and 800G for just before the

imaging process.

5.5.3 In situ imaging

In this section, we describe the sequence used for In-situ imaging. In general, this

is similar to the TOF method, the difference is the absence of fall time. Moreover,

the trigger for the camera and the AOM of the imaging laser is shifted from a small

amount due to the delay of the camera and the control system. Even if it is quite

small it is important that the cloud does not expand so we have the image of the

spatial density in the trapping potential. To get the value of the shift we scan the
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shifting time until the cloud is deformed by the imaging light.
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Figure 5.39: Sequence of In situ imaging. Here the imaging starts directly after

the evaporation and a period of thermalisation of 100ms, moreover a small delay of

< 1ms is added to allow for switching time of the dipole trap.

5.5.4 High field imaging and scattering length determina-

tion

When atoms are loaded into the dipole trap, they are pumped into a mixture of |F =

1/2,mF = −1/2〉 and |F = 1/2,mF = +1/2〉 hyperfine states, (see section 5.3.2).

By tuning the frequency of the imaging laser, it is possible to observe the population

of these states Fig. 5.40, and adjust the resonance frequency to maximise the number

of atoms. The desired frequency is obtained using an offset lock [78], described in

appendix E. It can be tuned over a wide range of frequencies, therefore imaging at

different magnetic fields/inter-atomic interactions [450G-900G] is possible. However,

to image the MOT we use another locking point, because when the Feshbach coils

are off we do not need to scan the imaging over a wide range, so-called low field
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imaging.
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Figure 5.40: a) Transitions used to image atoms in the High field regime. b) Atom

number against the imaging frequency showing the two peaks corresponding to the

two transition in fig a).

In the high field imaging case, once we find the optimal imaging frequency by

scanning the imaging frequency and choose the frequency that maximise the atom

number, we can directly read off the difference between the reference and imaging

laser using a frequency counter placed in the offset lock scheme. We then use this

value to find the corresponding magnetic field using Fig. 5.41. The peaks in Fig. 5.40
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b) are clearly resolved and the FWHM of each peak is Γ/2 = 12MHz. Then using

Fig. 2.4, we can determine the scattering length of the atoms.
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Figure 5.41: The frequency difference between the ground state F=1/2 and the

excited state mj = −3/2 (see Fig. 5.40) against the Feshbach magnetic field.



Chapter 6

Study of an interacting 6Li mBEC

In this chapter, we investigate the finite temperature properties of a strongly in-

teracting 6Li molecular BEC (mBEC) cloud in a harmonic trap to show that the

interactions due to the thermal atomic cloud lower the transition temperature by

depleting the condensate part, the interactions strength are tuned to investigate this

effect for different values of a (see Fig. 6.1).

By fitting the one dimension spatial density obtained by in situ absorption imag-

ing (see section 5.5.3), we get access to the temperature and the chemical poten-

tial of the atomic cloud. The quality of the fit is given by χ2 method [79, 80]. The

spatial density is fitted using three different models (see Fig. 6.1), Ideal Gas(IG)

model [24], Semi-Ideal(SI) model [81, 82] and Hartree-Fock(HF) model [83–85].

The IG model is the simplest and only takes in account the condensate-condensate

atoms interactions. The SI model, takes in account the condensate-condensate atoms

interactions, and also the interaction of the condensate cloud on the thermal atoms.

Finally, the HF models takes in account the interactions present in the SI, and adds

the effect of the repulsion of the thermal cloud on the condensate cloud. More-

over, a new numerical method developed by Nathan Welch [80] is used to solve

the HF equations . Then, we discuss the validity of the different models in dif-

ferent regimes, varying the proportion of the thermal/condensate atoms density by

changing the temperature, and also changing the interaction strength through the

94
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Feshbach resonance. We observe that when the density of thermal atoms density be-

comes important > 50%, the three model gives different results, and the χ2 method

shows that the HF model should be used in that regime.
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Figure 6.1: Condensed fractions against temperature for the different models (HF,

SI, IG).

In Fig. 6.1 The fitting program takes as input the trapping frequencies and the

spatial density, and gives the temperature and chemical potential as output. Here

we scan the temperatures and set a constant chemical potential using the different

fitting model [80] (HF, SI, IG) to give us the condensate fraction against temperature

in a)b)c). We observe that the critical temperature of transition is lowered as we

increase the interactions strength, this effect is more important in the case of the HF
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model due to thermal atoms interactions important at the transition temperature.

6.1 The Gross Pitaevskii equation

In the section 3.1.3, we described the Bose-Einstein condensation for a gas without

interaction. However, for a gas with an infinite compressibility, we can understand

that interaction will have a considerable effect. Consequently, in this first part we

describe the formalism used to characterize an interacting BEC in an harmonic trap.

Elements of this discussion can be found in [24, 86].

In the formalism of the second quantification, the many body Hamiltonian de-

scribing N interacting bosons trapped by an external potential Vext is given by:

Ĥ =

∫
drΨ̂†(r)

[
− h̄

2m
∇2 + Vext(r)

]
Ψ̂(r)

+
1

2

∫
drdr’Ψ̂†(r)Ψ̂†(r)V (r− r’)Ψ̂(r’)Ψ̂(r), (6.1)

where Ψ̂(r) and Ψ̂†(r) are the boson field operator, they can create or annihilate a

particle at the position r, and V (r− r’) is the two-body inter-atomic potential.

For a large number N of bosons, the eq.(6.1) is hard to solve and require a lot of

computational power, calculations using a Monte Carlo method for N = 104 have

been made in [87] to extract thermodynamics properties.

To simplify the problem, we use the Bogoliubov (1947) method [86]. We first

separate the condensate contribution to the bosonic field operator. Then, the sum

over all the states is separated between the particle in the ground state and the

excited state:

Ψ̂(r) = ψ0(r)â0 +
∑

i6=0

ψi(r)âi, (6.2)

where âi (â†i ) are the annihilation (creation) operators of a particles in the state ψi,

and i = 0 represents the condensate part. With the corresponding commutation
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relations:

[âi, â
†
j] = δij, [âi, âj] = 0. (6.3)

In a BEC, the ground state is macroscopically occupied, i.e. that N0 is of the order

of N . As a consequence, for temperatures low enough T < Tc, the commutation

relations eq.(6.3) can be neglected, the field operator is then be replaced by a = a† =
√
N0, and N0 = â0â

†
0 . The normalisation condition allows us to write Ψ0 = 1/

√
V ,

where V is the volume. We rewrite the eq.(6.2) as:

Ψ̂(r) =
√
N0/V + δψ̂(r), (6.4)

where the first term describes the condensate and δψ̂(r) is treated as a perturbation.

The generalisation of the mean field approximation of Bogoliubov for time dependant

problem can be written in the following form:

Ψ̂(r, t) = Φ(r, t) + δψ̂(r, t) (6.5)

where Φ(r, t) = 〈Ψ(r, t)〉 is the mean value of the field operator, having the meaning

of an order parameter. For an ensemble ofN bosons of massm trapped in a harmonic

potential Vext(r), the wave function Φ(r, t) is a solution of the Gross Pitaevskii

equation (GPE) [24]:

ih̄
∂Φ(r, t)

∂t
=

(
− h̄2

2m
∇2 + Vext(r) + g|Φ(r, t)|2

)
Φ(r, t). (6.6)

where g = 4πh̄2a
m

, the interaction term (see section 6.1). We can obtain the ground

state of eq.(6.6) by defining Φ(r, t) = φ(r) exp(−iµt/h̄), where µ is the chemical

potential and φ(r) a real function that satisfies the normalization condition
∫
drφ2 =

N0 = N . Therefore eq.(6.6) becomes:
[−h̄2

2m
∇2 + Vext(r) + gφ2(r)

]
φ(r) = µφ(r). (6.7)

This model was successful to describe results in experiments using density profile

for a > 0 [88], and its instability for a < 0 [89, 90]. The mean field approximation

is valid at low temperature and in the dilute limit where na3 � 1.
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Effective interacting potential. When the atomic density becomes important,

the collisions lead to an interaction energy that becomes bigger than other energy

of the system such as the thermal energy [74]. This interaction is approximated by

a contact interaction, even if the inter-atomic separation is larger than the range of

the potential. In this case we can calculate approximate the potential experienced

by an atom in a gas with a density n by:

Vat = lim
V→0

1

V

N∑

i=1

∫
gδ(r − ri)dr = gn =

4πh̄2

m
an. (6.8)

A characteristic length scale is introduced, the healing length ξ, which is the distance

over which the kinetic energy ≈ h̄/2mξ is equal to the interaction energy ≈ 4πh̄2

m
an,

i.e. when the healing length is ξ = (8πna)−1/2.

6.1.1 Thomas-Fermi approximation

In our experiment, the scattering length a > 0, corresponding to repulsive inter-

action. Moreover, the condition Na/aho � 1 is fulfilled, in that regime the wave

function Φ(r, t) =
√
n(r) is flattered, and the term ∇2

√
n(r, t) becomes small com-

pared to the interaction term gn2(r, t), consequently we can write:

n(r) = Φ2(r) =
µ− Vext(r)

g
(6.9)

Using the normalization of the density, we integrate over space and obtain:

µTF =
h̄ωho

2

(
15N0a

aho

)2/5

, (6.10)

where aho =
√
h̄/(mωho), is the oscillator length associated to the geometrical aver-

age ωho = (ωxωyωz)
1/3. From eq.(6.10) we can obtain the radius of the condensate

Ri where i = x, y, z, using the fact that:

nTF (Ri) = 0, (6.11)

and we obtain:

Ri = aho

(
15N0a

aho

)1/5
ωho
ωi

(6.12)
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This would predict a chemical potential µ = 0 at the transition temperature. How-

ever, the interaction of the thermal clouds that are not taken in account here will

have an influence on depleting the condensate part, and therefore increase the initial

chemical potential necessary to add an atom into the condensate part (see section

6.4).

6.1.2 Hartree-Fock equations

We write the GPE equations for the condensed part and the thermal parts separately

using eq.(6.6), adding the interactions terms describes in Fig. 6.2, we define the

Hartree-Fock equations:
[−h̄2

2m
∇2 + Vext(r) + gn0 + 2gnth

]
Ψ0 = µΨ0, (6.13)

and
[−h̄2

2m
∇2 + Vext(r) + 2gn0 + 2gnth

]
Ψi = εiΨi, (6.14)

where Vext(r) is the trapping potential (see further details in section 5.4.5), and ε

the energy of the ith excited level. The factors of 2 appear in the interaction terms

as there are two asymmetric interactions between condensate and thermal-thermal

atoms. These interactions are shown in the following figure:

a) Hartree interaction b) Fock Interaction

Figure 6.2: Feynman Diagrams of a) the Hartree interaction, between a ground state

(solid line) and an excited state atom (wavy line), b) Fock interaction, exchanging

an atom from the condensate with an atom from the thermal cloud. The interaction

is carried out via a s-wave scattering (dashed line).
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6.2 The fitting models

In this section, we describe the different models used to fit the density profiles

obtained by performing in situ measurements. As described in section 5.5, pictures

used for the spatial density profiles are taken from the top of the main chamber

(see Figs. 6.3,6.4), we then have access to the density of the longitudinal axis. In

the calculations, the density profiles are then integrated over the radial axis r and

fitted along the longitudinal axis z. We describe three different models, the main

difference among them is the types of interaction that are taken in account, from the

least accurate one, the Ideal Gas model, to the most accurate one, the Hartre-Fock

model. We will also discuss under which conditions these models are valid. These

models are originally described in [74, 80].

6.2.1 Ideal gas

The IG or ”bi-modal” model neglects all interactive contributions to the effective

potential excepts condensate-condensate atoms interactions, which leads to write

eq.(6.13) in the TF approximation:

[Vext(r) + gn0] Ψ0 = µΨ0, (6.15)

where the external potential is the optical trap described in section 5.4.2 and defined

by:

Vext =
1

2
m(ω2

rr
2 + ω2

zz
2), (6.16)

with ωr =
√
ωyωz the radial frequency and ωx the longitudinal frequency. Therefore,

by multiplying eq.(6.15) by Ψ∗0, we obtain the density for the condensate part:

n0 =
1

g
(µ− Vext)δ(Vext < µ). (6.17)
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Now, by doing a radial integration in eq.(6.17), we obtain the axial density profile

for the condensate atoms:

n(z) =





π
gmω2

r
(µ− 1

2
mω2

zz
2)2, |z| <

√
2µ
mω2

z

0, else.

(6.18)

In this model the thermal cloud is described by a Maxwell-Boltzmann approxima-

tion, neglecting the Bose-enhancement. The Maxwell-distribution used to describe

the thermal atoms is given by:

f(εi) =
1

e
(
εi−µ
kBT

) − 1
≈ e

(
−εi+µ
kBT

)
, (6.19)

with εi = h̄2k2

2m
+Vext. Then to find the spatial density distribution we integrate over

all the momenta k [81]:

nth(z, r) =

(
mkBT

2πh̄2

)3/2

exp

(
µ− Vext

kBT

)
. (6.20)

Moreover, eq.(6.20) is radially integrated to find the line density along z to give:

nth(z) =

√
m

2π

(kBT )5/2

h̄3ω2
r

exp

(
µ− Vext

kBT

)
. (6.21)

This model does not take into account the interactions of the thermal atoms and

should be used only for low temperatures, when the thermal part is negligible. A fit

of this model to the experimental data is shown in Fig. 6.5.

Figure 6.3: Raw image of the BEC. From the vertical imaging.
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z

y

Figure 6.4: Density profile of the BEC.

condensed part
thermal part
total density

Figure 6.5: Fitting of the atomic density using the (IG) model. The experimental

data points (blue squares) are the average over 10 density profiles (see section 6.3).

6.2.2 Semi-ideal

Here we present a more accurate model taking more terms of the Hartree Fock

eqs.(6.13,6.14) into account, so-called the semi-ideal model. Assuming that the

thermal part density is negligible, eqs.(6.13,6.14) can be written as:

[−h̄2

2m
∇2 + Vext(r) + gn0 +���XXX2gnth

]
Ψ0 = µΨ0, (6.22)
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and
[−h̄2

2m
∇2 + Vext(r) + 2gn0 +���XXX2gnth

]
Ψi = εiΨi, (6.23)

In the eq.(6.22) and eq.(6.23), the thermal interaction term is neglected, because

we suppose that the temperature is low enough to have a high condensate fraction.

However, the thermal cloud is described by the Bose-Einstein distribution:

nth =
ρ(E)dE

e
E−µ
kBT

−1
, (6.24)

where we assume that enough thermal states are occupied, therefore E is continuous

and ρ(E) is the density of state. We use the same trapping frequency as in the Ideal

gas model, i.e. we use ωr and ωz. We define the energy of the system as:

E(k, x, r) =
h̄2k2

2m
+
m

2
(ω2

rr
2 + ω2

zz
2) + 2gn0(z, r), (6.25)

and ρ(k, z, r) = 2πk2dk2πdrdx. The effective potential Ueff for the thermal is given

by:

Ueff(z, r) =
m

2
(ω2

rr
2 + ω2

zz
2) + 2gn0(z, r). (6.26)

Figure 6.6: The plot of Ueff on the left hand side is along (x, r = 0). The plot of Ueff

on the ride hand side is after integration over r. The parameters for this plot are:

ωr = 200Hz, ωz = 25Hz, T = 80nK, µ = 5h̄ωr, a = 1600a0.
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We remove the k-dependence by integrating over all the momentum states. The

method described in appendix B gives us:

nth(x, r) =
4π

(2π)3

∫ ∞

0

k2dk

e
E−µ
kBT − 1

(6.27)

=
2√
π
Ak

∫ ∞

0

X1/2dX

eX/Z − 1

= Ak

∞∑

l=1

Z l

l3/2

with the associate variables:

Ak =

(
mkBT

2πh̄2

)3/2

(6.28)

X =
h̄2k2

2mkBT
(6.29)

Z = exp
[
−
(m

2
(ω2

rr
2 + ω2

xx
2) + 2gn0(z, r)− µ

)
/kBT

]
(6.30)

Then, in Fig. 6.7, we plot the densities n(z, r) and nth before integration along

(z, r = 0) and after integration. The particular shape of the thermal cloud density

in Fig. 6.7 of the left hand side is given by the effective potential Ueff given by the

left hand side plot in in Fig. 6.6. After integration over r the shape of the effective

potential and the atomic density is changed (see Fig. 6.7 and Fig. 6.6), this has been

observed in [74, 91].
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ntot
nth

ntot
nth

Figure 6.7: Plot the densities n(z, r) and nth before integration along (z, r = 0) (left

hand side) and after integration (right hand side). he parameters for this plot are:

ωr = 200Hz, ωz = 25Hz, T = 80nK, µ = 5h̄ωr, a = 1600a0.

Analytical solution. In general, this problem can only be solved numerically [82].

However, in [24] the interactions are treated as a perturbation, and an analytical

solution can be found, using eq.(6.10), we define the following scaling parameter:

η =
µ(T = 0)

kBT 0
c

=
1

2
ζ(3)1/3

(
15N1/6 a

aho

)2/5

≈ 1.57

(
N1/6 a

aho

)2/5

, (6.31)

which is the ratio between the chemical potential defined in eq.(6.10) and the thermal

energy at T = 0 in the non interacting case (see eq.(3.11)). The order parameter η

mainly depends on the the ratio a/aho, which is usually < 1 for weakly interaction

BEC, however in our case, considering that we can tune the inter-atomic interactions,

the ratio can reach a value of 1. Using the approximation that η is small [24, 81]

found the following relation:

N0

N
= 1− t3 − ηζ(2)

ζ(3)
t2
[
1− t3

]2/5
, (6.32)

where t = N0/N , in eq.(6.32) the first term is eq.(3.14) and the second term rep-

resents the first correction of the semi-ideal model with η small. Using the same
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approximation [83] shows that we can write the shift in critical temperature such

as:

∆Tc
T 0
c

≈ −1.33
a

aho
N1/6 = −0.43η2/5, (6.33)

where ∆Tc = Tc − T c0 . Moreover in [92], experimental measurements demonstrate

that a second order correction depending on the scattering length a is needed to

describe the shift in critical temperature for strongly interacting gas.

6.2.3 Hartree-Fock

The semi-classical model is suitable for low temperatures due to the low density

of thermal atoms, however when temperatures are close to Tc, this model leads to

inaccuracies. Therefore, to improve the model, the repulsion caused by the thermal

cloud density is included into the GPE equations :

[−h̄2

2m
∇2 + Vext(r) + gn0 + 2gnth

]
Ψ0 = µΨ0, (6.34)

and
[−h̄2

2m
∇2 + Vext(r) + 2gn0 + 2gnth

]
Ψi = εiΨi, (6.35)

to give the condensate density part:

n0(z, r) = (6.36)

max

{
1

g

[
µ− m

2
(ω2

rr
2 + ω2

zz
2)− 2gnth)

]
, 0

}
,

and the thermal density part:

nth(z, r) =

(
mkBT

2πh̄2

)3/2 ∞∑

l=1

Z l
full

l3/2
, (6.37)

where

Zfull = (6.38)

exp
[
−
(m

2
(ω2

rr
2 + ω2

zz
2) + 2gn0(z, r) + 2gnth(z, r)− µ

)
/kBT )

]
.
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We define the effective potential as (see Fig. 6.8):

Ueff =
m

2
(ω2

rr
2 + ω2

zz
2) + 2gn0(z, r) + 2gnth(z, r) (6.39)

Figure 6.8: The plot of Ueff on the left hand side is along (x, r = 0). The plot of Ueff

on the ride hand side is after integration over r. The parameters for this plot are:

ωr = 200Hz, ωz = 25Hz, T = 80nK, µ = 5h̄ωr, a = 1600a0.

and the corresponding atomic density profiles:

Figure 6.9: Plot the densities n(z, r) and nth before integration along (z, r = 0) (left

hand side) and after integration (right hand side). The parameters for this plot are:

ωr = 200Hz, ωz = 25Hz, T = 80nK, µ = 5h̄ωr, a = 1600a0.
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An iterative scheme can be used to solve eq.(6.36) and eq.(6.37), but it requires

considerably larger computational resources than the two models (IG and SI) given

above.

In order to be able to fit this more complex model to the experimental data, we use a

method, where the summation and iterations required are solved just once and then

interpolated (see Fig.6.10) to give the fully interactive densities, this method was

develloped by Nathan Welch [80]. The eq.(6.36) is injected in eq.(6.37) to eliminate

the condensate part density. Then, both sides of eq.(6.37) contain nth, therefore we

can write the following transcendental equation:

X = a
∞∑

l=1

e−l|b+X|

l3/2
, (6.40)

with

a =
2as
h̄

√
2kBTm

π
(6.41)

and

b =
m
2

(ω2
rr

2 + ω2
zz

2)− µ)

kBT
(6.42)

a

b
Figure 6.10: Interpolation of the transcendental equation eq.(6.40).[80].
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The absolute exponent in eq.(6.40) allows the density distribution of the thermal

cloud to be calculated in both the (mainly) condensate and (mainly) non-condensate

regions. The self-interacting cloud can then be found using:

nth(z, r) =
kBT

2g
X(a[T ], b[r, z, µ, T ]). (6.43)

6.2.4 Comparison between the SI and the HF model

In Fig. 6.11, we compare the two most relevant models, the SI and HF models. On

the left hand side the temperature is very low T = 60nK, on the right hand side

T = 150nK. We see that the models give similar results at low temperature when

the density of thermal atoms nth is low, and diverge when the temperature approach

the critical temperature Tc, due to the influence of the density of the thermal atoms.

Figure 6.11: The parameters for this plot are: ωr = 200Hz, ωz = 25Hz µ = 5h̄ωr,

a = 1600a0, T = 60nK for the left hand side figure and T = 150nK for the right

hand side figure.

6.3 Fitting program

In this section, we describe the way the spatial atomic density measurements are

processed and analysed by the fitting program. We first process the data in four

individual steps, the three first step are depicted in Fig. 6.12.
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Figure 6.12: In order to compensate the spatial fluctuation of the lithium atoms,

we take 30 absorptions images for each value of the trapping frequencies. Then we

separate the data into 3 packs of 10 images, these 10 images are then average to give

3 different distributions with a standard error. Then the 3 different distributions

are fitted with the different models (IG, SI, HF) to give 3 values of temperature and

chemical potential, which leads to an estimation of the standard error for T and µ.

1. Step 1: We take 30 In-situ absorption images for a particular set of trapping

frequencies and interactions strength [ωr, ωz, a].

2. Step 2: The 30 images are divided in three equal parts, each part is summed-

up and averaged. Note that for the average, the different density distributions

need to be centred, to do so a SI fitting is performed. For this fit all inputs
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are free parameters in order to find the center of the distribution z0.

3. Step 3: From the previous step, we obtain three density distribution with a

standard error, which are then fitted with the IG, SI and HF models.

4. Step 4: From the fits of step 3, we obtain a set of three sets [T + ∆T, µ+ ∆µ]

for each model.

Chi-squared method. We define the quantity χ2 that is used to define the good-

ness of a fit:

χ2 =
∑

i

(yi − y(xi)
2)

αi
, (6.44)

With αi the error bar, yi the experimental value and y(xi) the value of the fit. The

χ2 is summed over all the data points and should be minimised to obtain the best

fit. A complete study of the least square fitting is described in [79]. The original

program proposed by N.Welch used a Matlab function fminsearch to find the best

[T, µ] couple of parameters in order to minimise the χ2. However for the HF model,

the program had difficulties to find a solution due the higher complexity of the HF

model. We therefore replace the original function by fminsearchbnd a modified

Matlab function where boundaries can be fixed [T0 ±∆T, µ0 ±∆µ] so the program

is looking for values of [T, µ] in a reasonable range. This helps the algorithm finding

the solution faster in the HF model case, also a starting point is set for the algorithm

[T0, µ0]. These initial values are the final values found by the SI model.

6.4 Results

In this section, we discuss the results of the fitting using the Ideal Gas model,

the Semi Ideal model and the Hartree-Fock model to our actual data. The main

objective is to determine temperature and chemical potential using the trapping

frequencies, total atom numbers and one-dimension density profiles as input. From
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these outputs, we can also obtain the condensate and thermal fraction of the atoms.

In Fig. 6.13, we represent the condensate fraction against the temperature obtained

by the fitting of the three different models (see section 6.3) with the interaction

strength set at a = 1600a0, we also plot analytical solution of the IG [24] and SI

model [81] as reference. Atom clouds are prepared by setting the power of the

dipole trap to different final values to reach different temperatures, therefore the

trapping potential ωho varies, consequently we plot the condensate fraction against

the temperature and the trapping frequency. The total atom number in the cloud

ranges from 1, 5.105 to 2, 5.105.

0 0.2 0.4 0.6 0.8 1
T/T

0

0

0.2

0.4

0.6

0.8

1

N
0/N

Ideal gas
Semi-Ideal
Hartree-Fock

IG analyticalSI analytical

T/T
0

Figure 6.13: Plot of the condensate fraction against the temperature. On the left

hand side, the shaded area is bounded by the analytical solution [81] for SI model

where η = 0.72 (see eq.(6.32)) for two different values of trapping frequencies ωho,

these two values are the trapping frequencies at the beginning and the end of the

evaporation. The solid line represents the ideal gas eq.(3.3). On the right hand side

we plot the the same functions and data adding a third dimension, the trapping

frequency that varies during the measurements when we change the depth of the

dipole trap to change the temperature. T0 is the transition temperature from the

ideal case defined in eq.(3.11).
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For temperatures T < 0.5Tc, the three models give approximately the same

condensate fraction, because for these temperatures the condensate fraction is high

enough so that the effect of the thermal atoms becomes less important, therefore

the three models converge to the same condensate fraction value, and the SI and HF

data points agree well with the SI analytical model. For temperatures T > 0.5Tc, we

see that the three models diverge, because of the more important fraction of thermal

atoms, and therefore the thermal atoms interaction term in the HF equations is big-

ger, the thermal atoms deplete the condensate cloud. The SI model overestimates

the condensate fraction compared to the Hartree-Fock model when thermal interac-

tions are significant, the SI fitting points diverge from the SI analytical solution, and

the HF fitting points are closer to the SI analytical solution. Moreover, The Hartree-

Fock model gives a lower temperature of transition than the SI model, because of

the importance of the thermal cloud atoms at this stage of the condensation, the

HF model is a more realistic model to determine the transition temperature. This

difference between the SI model and the HF model has been measured with 87Rb at

lower interaction strength a ≈ 100a0 [88].



CHAPTER 6. STUDY OF AN INTERACTING 6LI MBEC 114

18
16

14

12

10

8
6

4
2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N0/N

μ 
(h
ω

r)

Thermal atoms condensate atoms 

HF

SI
IG

Figure 6.14: Plot of the chemical potential for the three different models against the

condensate fraction. At low condensate fraction, i.e. high thermal fraction the SI

and GI models tend to zero, on the other hand the HF model tends to a finite value

due the interaction energy of the thermal cloud.

In Fig. 6.14, we plot the chemical potential found through the fitting program, the

difference between the SI and IG model is small. The chemical potential starts from

a value around zero, and goes asymptotically to a finite value when the condensate

fraction increases. Due to the thermal atoms density interactions taken in account

in the HF model, the initial value of the chemical potential, when almost all the

atoms are in the thermal part is µc ≈ 2gnth,0 = 14h̄ωr with nth,0 the thermal cloud

density:

nth,0 ≈
(
mkBT

2πh̄

)3/2

γ(3/2). (6.45)

For lower temperature, the chemical potential is given by µHF ≈ 16h̄ωr. In the case

of the SI model, when almost all the atoms are in the thermal part, the chemical

potential is µc ≈ 0. When the condensate atoms dominates the chemical potential

converges to the chemical potential of the HF model µSI ≈ 14h̄ωr. This means that

the chemical potential is mostly determined by the interaction energy of the system.

At low temperature the interaction energy of the condensate atoms dominate, and

at high temperature the interaction energy stems mainly from the thermal atoms.
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Figure 6.15: χ2 for fits of the different models (blue - HF model, red - SI model,

green - IG model). For the set of data shown in Fig. 6.13.

In order to determine which model fits the experimental data best, we calculate

χ2 value for each fit for a range of clouds with different temperatures. For this we

use the same experimental data set as in Fig. 6.15. The χ2 is always lower in the

case of the HF model. For high temperature, which is expected, the HF model

seems to fit better the experimental data. When the temperature decreases the χ2

of the three models converge, even if the relation χ2[HF ] < χ2[SI] < χ2[IG] is still

verified at all the temperatures.

Higher interactions

In this paragraph, we perform the same measurements at different scattering length

1600a0 , 3500a0, 4500a0 and we observe a decrease in the transition temperature

when we increase the scattering length (see Fig. 6.17), that agrees with the obser-

vation in [92, 93]. Moreover, by increasing the interaction strength, we see that the

chemical potential is increased (Fig. 6.16), which makes sense since the chemical po-

tential is related to gn, with g depending on the scattering length (see section 2). In

Fig. 6.17 a)b), we see that the critical temperature Tc is lowered as the interactions
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are increased. In Fig. 6.17 c)d) the statistical analysis also show that the HF model

is more suitable when the thermal atoms part is > 50%.
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Figure 6.16: Chemical potential against condensate part at different interaction

strength for the HF and SI model. (blue - HF model, red - SI model)
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Figure 6.17: The two plots represent the χ2 analysis for the measurements at a =

3500a0 and a = 4500a0 (see Fig. 6.18).
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Figure 6.18: Plot of the condensate fraction against the temperature at a = 3500a0.

On the left hand side, the shaded area is bounded by the analytical solution for SI

model where η = 0.93 (see eq.(6.32)) for two different values of trapping frequencies

ωho, these two values are the trapping frequencies at the beginning and the end of

the evaporation. The solid line represents the ideal gas eq.(3.3). On the right hand

side we plot the the same functions and data adding a third dimension, the trapping

frequency that vary during the measurements. Tc is the transition temperature from

the ideal case defined in eq.(3.11). c) same as a) and d) same as b), with a = 4500a0

and η = 1.02.
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6.5 Radius Measurement

In this section, we are going to focus on a different approach, allowing us to find an

analytical for the formula for the HF model between the radius of the condensate R

and the condensate fraction. The radius of the condensate in the TF approximation

is directly related to the chemical potential, using eq.(6.17) for x = R and after

radial integration, we obtain [80]:

Rz =

√
2(µ− gnth,0)

mω2
z

, (6.46)

with ,

nth,0 ≈
(
mkBT

2πh̄

)3/2

γ(3/2), (6.47)

the peak thermal cloud density. In eq.(6.46) the presence of the gnth,0 term is

necessary to have the radius of the condensate Rx = 0 at the temperature Tc,

because the chemical potential is different from zero at the transition in the HF

model (see Fig. 6.14).

The original idea is originally described in [1], however in this paper the conditions

are different, as they use time of flight imaging, and we are using in-situ imaging

which is according to [1] more suitable for the the theoretical model developed in the

paper. Moreover, we are able to tune the scattering length to vary the inter-atomic

interactions.

6.5.1 Relation between the radius of the condensate and the

condensate fraction using ideal gas model

In this section, we describe the theory and the main approximation developped in

[1] in order to find the analytical formula between R the radius of the condensate

and N0 the number of atoms in the condensate part. The density of the condensate

part equation is similar to the ideal gas model:

n0(r) =
µ− V (r)

g
(6.48)
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where V (r) = 1/2mω2
rr

2 is the external potential, µ the chemical potential and g the

interaction strength. For an isotropic potential, the density profile corresponds to an

inverted parabola, with R the radius of the parabola, determined by the condition,

µ = V (R). The normalization of the wavefunction gives us [94]:
∫
|Ψ(r)|2d3r =

∫
|n0(r)|2d3r = N0, (6.49)

by integration of eq.(6.48) over the space r and using eq.(6.49), we obtain a formula

for the chemical potential:

µ =

[(
15gN0

8π

)2(
mω2

ho

2

)3
]1/5

. (6.50)

Inserting eq.(6.50) into the condition µ = V (R) gives us a relation between chemical

potential and atom number in the condensate:

R5

N0

=
15

4π

g

mω2
ho

= C, (6.51)

where C is a constant depending on the inter-atomic interactions and the trapping

frequencies. Applying the same method as in section 6.1.1, we can define eq.(6.51)

in an anisotropic trapping potential:

R5
i

N0

=
15

4π

g

mω2
ho

(
ωho
ωi

)5/2

= Ci. (6.52)

6.5.2 First correction to the ideal model

We have first found the relation eq.(6.51), that gives that the ratio R5

N0
equals to

a constant C. Now, we define the following relation using the GPE and the TF

approximation:

n0(r) + nT (r) =
µ− V (r)

g
, (6.53)

where nT , the density of thermal atoms, from that we obtain the following relation

[1]:

R5
i

N0

= Ci

(
2

N0/N
− 1

)
. (6.54)
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6.5.3 Analytical Hartree Fock model

In this section, we describe a simplified Hartree-Fock model, and we follow closely

the developement in [1]. This model is valid [81, 95, 96] when the thermal energy

kBT � h̄ω, i.e. when thermal atoms cloud has a larger spatial extent than the

oscillator a =
√
h̄/mω. In this approximation the density distributions are given

by:

n0(r) =
µ− V (r)− 2gnT (r)

g
Θ(µ− V (r)− 2gnT (r)) (6.55)

nT (r) =
1

λ3
T

g3/2

(
e
−V (r)+2gnT (r)+2gn0(r)−µ)

kBT

)
(6.56)

So far, the model is similar to the one exposed in section 6.2.3. We define the

thermal DeBroglie wavelength λT =
√
h̄2/2πmkBT and:

g3/2(x) =
∞∑

n=1

xn

n3/2
(6.57)

In this model, the interactions between thermal atoms will be neglected due to

the supposed low density of the thermal cloud, however their interactions with the

condensate are kept. Then, eq.(6.55) remains the same. The main assumption is

the existence of a quantitative equivalence between the chemical potential and the

repulsive field in eq.(6.56). The peak density in eq.(6.48) is given by npeak = µ/g,

corresponding to the minimum of the potential. The interactions of the atoms

in the condensate is approximated by a homogeneous distribution, given by half

of the peak density of the original distribution, nuniform ≈ npeak/2 = µ/2. The

approximation is then, n0(r) ≈ nuniform = µ/2. This approximation means that the

thermal atoms interact independently from their position in the trap. The choice of

nuniform ≈ npeak/2 is based on the mean value of the density of the condensate cloud

based on:

nuniform = 〈n0r〉 =

∫
ψ∗(r)n0(r)ψ(r) (6.58)

=

∫
|ψ(r)|4d3r.
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Applying eq.(6.48) to ψ(r) with an isotropic potential and a harmonic trapping

potential, we have:

nuniform =
65π
√

2

105(mω2
ho)

3/2

µ7/2

g2
, (6.59)

substituting eq.(6.50) in this expression gives us:

nuniform =
4

7

µ

g
= 0.57

µ

g
≈ 1

2

µ

g
, (6.60)

Therefore, the thermal atom density can be simplified as:

nT (r) =
1

λ3
T

g3/2

(
e−V (r)/kBT

)
. (6.61)

We integrate eq.(6.48) and eq.(6.61), using N = N0 +NT , resulting in an expression

for the chemical potential:

µ =
3

4π

[
Ng

R3
+

2π

5
mω2

hoR
2 − g(c0f(R/σ) + c1)

R3

(
kBT

h̄ωho

)3
]
, (6.62)

with

c0 =
4√
π
, c1 = ζ(3), (6.63)

where ζ(n) the Riemann zeta function, R is the limit of the Heaviside function

of eq.(6.55) and σ =
√

2kBT/mω2. The expression eq.(6.62) contains the zero

temperature term, the trapping energy term and the HF correction due to finite

temperature. And finally the function f(R/σ):

f(R/σ) =

(
R

σ

) ∞∑

n=1

e−n(
R
σ )

2

n5/2
−
√
π

2

∞∑

n=1

erf
(
n1/2R

σ

)

n3
(6.64)

To determine R, we use the boundary condition:

n0(R) = 0⇒ µ− V (R)− 2gnT (R) = 0, (6.65)

leading to:

R5 =
15

4π

g

mω2
ho

[
N − (c0f(R/σ) + c1 + c2g(R/σ))

(
kBT

h̄ωho

)3
]
, (6.66)
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where c2 = 8
3
√
π
. At T = 0, eq.(6.66) corresponds to eq.(6.51).We finally obtain [1] :

R5

N0

≈ 15

4π

U0

mω2
ho

1

r
[1− 0.83F (R/σ)(1− r)] , (6.67)

where r = N0/N . Where F (R/σ) = c0f(R/σ) + c1 + c2g(R/σ) shown in Fig. 6.19,

an approximated value of F (R/σ) ≈ 0.55 is taken from this curve using the fact

that the ratio R/σ, which is the ratio between the radius of the condensate and the

extension of the thermal cloud is in the range [0.8, 1.2] [1].

F
un

ct
io

n 
F

 (
R

\σ
)

R/σ

Figure 6.19: Function F (R/σ). From [1]

In our case, we are interested in the value of Rz, therefore we use the eq.(6.52)

into eq.(6.67) to obtain:

R5
z

N0

≈ 15

4π

U0

mω2
ho

(
ωho
ωz

)5/2
1

r
[1− 0.83F (Rz/σz)(1− r)] . (6.68)

However, during the evaporation process that allows us to change the ratio N0/N ,

we vary the trapping frequency ωho, but the ratio ωho/ωz is almost constant over

the range that we use during the evaporation and can be averaged. Therefore the

eq.(6.67) is plot in 3D (see Fig.6.20) to take in account the fact that ωho changes.

6.5.4 Comparaison of the 3 models

Here we present the different relations between the radius of the condensate and the

condensate fraction in an anisotropic trap, using an ideal gas model eq.(6.52), a first
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correction eq.(6.54) and an analytical HF model eq.(6.68). In our experiment we

need to vary the trapping frequency to vary the temperature, therefore a 3D plot is

necessary, and we compare these three methods in the following figure:

Figure 6.20: 3D plot of the three different model, the ideal gas model is simply

a constant, the first correction gives larger radius of the condensate than the HF

model when we approach the transition, i.e. N0/N → 0. For these plot we have

chosen the scattering length a = 1600a0 and a ration ωz/ωr = 1/7.
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6.6 Results

We use the results of the chemical potential from the HF model found in the previ-

ous section (see Fig. 6.16) in order to work out the radius of the condensate using

eq.(6.46). The theoretical curve is obtained using eq.(6.68), however in our experi-

ment in order to vary the condensate fraction N0/N . Consequently, we need to vary

the trapping frequencies, therefore the eq.(6.67) depends on two parameters, the

condensate fraction N0/N and the trapping frequency ωho. The plot on Fig. 6.21 at

1600a0 and 3500a0 show a good agreement between the theoretical plot (the blue

transparent curve) defined by eq.(6.67) and the experimental data (the cyan markers

linked by the dark blue line). However at very high interaction 4500a0 on Fig. 6.22

the model breaks down and does not correspond to the experimental data points.
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(a) (b)

(c)
(d)

Figure 6.21: a)Radius measurement against condensate fraction with a scattering

length as = 1600a0 using the HF model, the different lines represent different trap-

ping frequencies.a)Radius measurement against condensate fraction with a scatter-

ing length as = 1600a0 in 3D using the three different models.a)Radius measure-

ment against condensate fraction with a scattering length as = 3500a0 using the HF

model, the different lines represent different trapping frequencies.a)Radius measure-

ment against condensate fraction with a scattering length as = 3500a0 in 3D using

the three different models.
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(a)

(b)

Figure 6.22: a)Radius measurement against condensate fraction with a scattering

length as = 4500a0 using the HF model, the different lines represent different trap-

ping frequencies.a)Radius measurement against condensate fraction with a scatter-

ing length as = 4500a0 in 3D using the three different models.

The good agreement between the radius of the condensate (strongly related to

the chemical potential) with the theoretical 3D plots (1600a0 and 3500a0) give us

a supplementary argument in favour of the HF model and about the solidity of

the analytical solution proposed in [1] even at higher interactions strength. These

results also tend to confirm the coherence of the chemical potential behaviour found

by the fitting program Fig. 6.16.

6.7 Prospects: Using an Energy conservation Method

to Compare in-situ atom models

In this section, we develop a model to demonstrate with another method which

models is the most accurate to describe the atomic cloud, using energy conservation

arguments. The theoretical model has been elaborated with the help of N.Welch,

and we describe an experimental application of that model. The previous section



CHAPTER 6. STUDY OF AN INTERACTING 6LI MBEC 127

explained how to find the temperature, chemical potential and condensate fraction

by fitting an in-situ atomic distribution using three different models. We found

that the three models give differing results, especially at high atomic interaction

strengths when a cold dense cloud can be mistaken for a Bose-Einstein condensate.

In order to test the accuracy of the three-models, we first calculate the total

energy predicted by fitting the in situ atomic density in the crossed beam dipole

trap using the three different models to obtain three different total energy. Then,

we want to let the atomic cloud expand in one beam dipole (see Fig. 6.23) measure

again its energy by fitting a Boltzmann function, by knowing the temperature we

calculate the energy E = kBT . Finally, we compare the total energy predicted by

the three models with the energy of the cloud in the one beam dipole trap in order

to confirm that the HF model is the most suitable.

tight trap loose trap 

switching off the back reflected 
beam of the dipole trap

Figure 6.23: The atoms are transferred from a tight trap made of the two crossed

beam, then we switch off one of the beam the create a shallower trap and let the

atoms expand.

6.7.1 Total energy calculation

For the three-different models we need to calculate the total energy predicted from

the fitted densities. Therefore, if we assume we have suitably close fits to the ex-

perimentally found in-situ thermal density nth and condensate density nc, then we
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can calculate the atomic phase-space distribution according to each model and then

calculate the total energy Etot:

Etot = Ek + Eint + Etrap,loose, (6.69)

where Ek is the kinetic energy and Eint is the interaction energy, and Etrap,loose is

trapping energy in the loose trap, given by:

Etrap,loose(z, r) =
1

2
ω2
z,loosez

2 +
1

2
ω2
r,looser

2. (6.70)

We calculate the energy distribution in phase-space of the atoms in the tight trap,

using the spherical symmetry in k-space and cylindrical symmetry in real space:

ε1(k, r, z) =
h̄2k2

2m
+ Utrap,tight(r, z) + Uint(r, z), (6.71)

where the tight trapping potential corresponds to:

Etrap,tight(z, r) =
1

2
ω2
z,tightz

2 +
1

2
ω2
r,tightr

2. (6.72)

Note that it is the third term, Uint, which differs between the different models. For

the ideal-gas model it simply equal to zero. For the semi-ideal model it is equal

to 2gnc(r, z) and for the Hartree-Fock model it is equal to 2g(nc(r, z) + nth(r, z)).

We can then find the energy by integrating the atomic distribution over the energy

distribution of the new trapping potential, this is almost identical to eq.(6.71) except

we now use the loose trapping potential:

ε2(k, r, z) =
h̄2k2

2m
+ Utrap,loose(r, z) + Uint(r, z) (6.73)

Therefore the energy of the thermal cloud is given by:

Eth =

∫ kmax

0

∫ rmax

0

∫ zmax

0

f(ε1)ε2dvps, (6.74)

where f(ε) is the Bose-Einstein distribution:

fε =
1

1− e
ε−µ
kBT

, (6.75)
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and the volume element in phase-space is given by:

dvps =
1

8π3
4πk2dk2πrdrzdz, (6.76)

where we have not carried out any cancellation of the factors to explicitly show that

each element (dkdx)2 has a volume of 1
(2π)3 in phase space. We also show that in

order to save computationally, we are using spherical symmetry in k and cylindrical

symmetry in r and z as mentioned and also mirror symmetry in z. In addition this

energy we will also need the trap and interaction energy of the condensate itself.

We are assume that we are in Thomas-Fermi approximation. The integral to find

the energy of the condensate cloud is then given by:

Ec =

∫ rmax

0

∫ zmax

0

nc(r, z)ε3dv, (6.77)

where the energetic distribution is only spatial and given by:

ε3(r, z) = Utrap,loose(r, z) + Uint(r, z). (6.78)

This time the interaction potential is the same for the ideal model but for the

semi-ideal it is gnc(r, z) and for the Hartree-Fock model it is equal to g(nc(r, z) +

2nth(r, z)). The spatial integration volume element is now given by:

dv = 2πrdr2zdz. (6.79)

6.7.2 Predictive capabilities

Using eq.(6.74) and eq.(6.77), we can then find the total energy Etot = Ec +Eth. For

the same atom cloud the three different models will produce three different values of

Etot. If we then assume that once the cloud has equilibrated entirely and the transfer

was adiabatic in the loose trap, this energy will have been conserved. Additionally,

if the cloud is suitably low density due to the low trapping frequencies, we should

then be able to model the cloud as an ideal Maxwell- Boltzmann gas. Therefore, if

the equilibration takes place entirely adiabatically, the three different total energies



CHAPTER 6. STUDY OF AN INTERACTING 6LI MBEC 130

can be translated to three different temperatures, Tloose = Etot/(3kBN). By fitting

the low density gas to a simple Gaussian distribution, we should quickly be able to

find the actual new temperature and see which model is closest with its prediction.

6.7.3 Numerical integration

The integration maxima can be found by approximating the very end of the atomic

distribution as a Maxwell-Boltzmann type curve and so using the limits of double

bit-precision a maximum energy can be found:

Emax = 16kBT log(10) (6.80)

From this we can find the approximate spatial and k-space limits:

r, zmax =
√

2Emax/m/ωr,z, (6.81)

.

Note that this approximation is only used to aid in numerical stability. We

can then carry out the integrations numerically using an equally spaced grid and

improving the accuracy by using composite Newton-Cotes coefficients [97].

6.7.4 Experimental application

For this method to work as described in the introduction, the atomic cloud has

to reach the ideal gas situation. Therefore, we have to let the cloud expand for a

sufficient expansion time > 15ms, so that the effects of interaction have vanished.

The idea is to transfer the atomic cloud from the dipole trap with two beams (tight

trap) to a shallower dipole trap (loose trap) with one beam and let the atoms reach

their classical behaviour, then perform a simple IG model fitting. To do so, a shutter

is placed on the way back of the dipole trap beam Fig. 6.24. A picture is then taken

after a sufficient time t ≈ 20ms.



CHAPTER 6. STUDY OF AN INTERACTING 6LI MBEC 131

 

 

 

Fluorescence 

 photodiode

Li M
OT

Cs M
OT

Cs M
OT

Li M
OT

CCD

IPG 100W CW
     Laser
   1064 nm

AOM box

 I
m

g

Mirror

Beam dump

Outcoupler
 
Waveplate

Brewster polariser

Lens

Beam shutter

PD

Figure 6.24: Top view of the main chamber. The yellow path represents the path

of the optical dipole trap, a beam shutter is set in order to block the beam before

it enters again in the main chamber.

An absorption imaging picture is taken in Fig. 6.25. So far the stability at

this level of power did not let us image properly the cloud properly, too many atoms

where lost during the transfer. Therefore, a next step will be to improve the stability

and optimise the transfer between the tight trap and the loose trap.
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Figure 6.25: Absorption imaging picture of the atoms cloud transferred in the one

beam dipole trap. The direction of the trap in rotated from the horizontal x-axis

direction.



Chapter 7

Initial work: Double well with 6Li

molecules

7.1 Introduction

In this chapter we describe the state of the art and the implementation of a double

well potential shaped dipole trap to reproduce a Josephson junction (JJ) [98] with

cold atoms. Firstly, in order to observe the associated effects, such as Josephson

AC/DC current [99], Josepshon oscillations and self trapping [100–102]. Finally, a

future step would be to use the second species 133Cs (see appendix G) as an impu-

rity to realise the Dicke model [103]. Another experiment will be to perform large

Josephson oscillations at the BEC-BCS crossover in order to observe solitons[102].

My contribution of this part was to design and set up the optics and electronics to

create a double well shaped trapping potential.

7.2 A Josephson junction in the cold atoms paradigm

Cold atoms can be used for the simulation of condensed matter system. Here we

describe the ulracold atoms equivalent of a JJ. First let’s describe the original JJ

[98] (see Fig. 7.1).

133
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Figure 7.1: The classic JJ, consist of two superconductors separated by an insulator.

From [19].

The left and right sides are described independently by two macroscopic wave

functions with ψL/R the amplitude of probability and φL/R the phase, and the relative

phase φ = φL − φR.

In a condensed matter system, two electrons at the Fermi sea surface in a su-

perconductor pair up to create the so-called Cooper pair. In our cold atoms exper-

iments, the cooper pairs are formed by attractively interacting lithium atoms, that

exist in different states (BEC, BEC-BCS crossover, BCS) (see Fig. 1.2), note that a

JJ has been realised and observed among those states [104]. The equivalent of the

insulator is an optical barrier obtained by using a blue detuned light beam depicted

in Fig. 7.2 (see section 4.3).
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Figure 7.2: Double well trap created by the superposition of the optical dipole trap

described in section 5.4.2 and a blue detuned beam, in this figure the power of the

dipole trap beam is P1 = 1W and the blue laser beam is P2 = 100mW . The atoms

are on both side of the barrier.

Once the atoms are condensed into a BEC, the optical barrier is ramped-up

adiabatically, the position of the barrier allows us to adjust the population imbalance

z between the two sides:

z =
NL −NR

NL +NR

. (7.1)

The population imbalance can also be adjusted via a magnetic coil gradient to move

the atoms Fig. 7.7 [105]. The conduction G can be adjusted by the proportion of

thermal atoms in the BEC and the height of the optical barrier.
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μ1 μ2

ψL,NL,φL ψR,NR,φR

Vext

z
Figure 7.3: Schematic geometry of the double well with a split BEC. Where µi, Ni

and φi are respectively the chemical potential, atom number and phase. The value

i defines the side in which the BEC is situated, R for right side and L for left side.

Different effects have been observed so far: Plasma oscillations/Self-trapping.

In the case of the plasma oscillations, the difference between the population of the

right side and left side of the double well must be under a certain critical value,

zC = 0.5 for rubidium 87 atoms described in [100]. This leads to oscillations in z

and φ, corresponding to a harmonically oscillating pendulum. In the case of z > zc,

the on-site interaction energy becomes larger than the tunnelling energy [106]. The

phase increases rapidly in time, and leads to a fast tunnelling current, the popula-

tion imbalance stays around the initial value, and the phase grows monotonically, so

called self-trapping. For a system described in Fig. 7.3, the Josephson’s oscillations

are mathematically defined by a couple dynamic equations for the varation of the

phase and the population imbalance [99, 100]:

φ̇ =
∆µ

h̄
− ωJ

z√
1− z2

cosφ, (7.2)

and

ż = ωJ
√

1− z2 sinφ−G∆µ, (7.3)
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where G is the conductance, ωJ the tunneling frequency, the chemical potential

µ = µ1 − µ2, and the phase φ = φL − φR. The second term on the right side of

eq.(7.3) is a damping term due to the finite temperature of the BEC. In Fig. 7.4,

we show simulation from GPE’s LAB [107], allowing to solve dynamical GPEs and

observe oscillations in the low interaction case.

The a.c Josephson effect seems at first similar to the plasma oscillations, however

the difference between the plasma oscillations and the a.c Josephson effect is that

the amplitude of φ is different. For the plasma oscillations it is limited to π < φ < π

and can be defined for small amplitude, therefore the variation of the population

can be approximated in that case to ż ∝ φ. In the case of the a.c Josephson effect,

a constant ∆µ is applied, and for G = 0, we can write ż = −ωJ sin(∆µ
h̄
t). In the a.c

Josephson effect, the phase φ always increases and reveals the sinusoidal nature of

eq.(7.3).
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10ms

(a)

100ms

(b)

200ms

(c)

Figure 7.4: Simulation using GPElab [107]. Dynamical simulation of GPEs equa-

tions, using optical trapping frequencies ωr = 200Hz and ωz = 30Hz, and number

of atoms N = 1000.

7.3 Experimental aparatus

In this section, we describe the experimental implementation of the double well.

To do so, we have set a second laser beam (green beam on Fig. 7.5) blue detuned

from the atomic transition. We choose a laser beam with a wavelength λ = 532nm
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(Dragon laser 1W, ref:532FN1W). This laser beam acts as a repulsive potential in

the middle of the optical dipole trap, corresponding to the insulating barrier (see

figure Fig. 7.2).

Figure 7.5: Figure of the experimental setup with the main chamber. The green line

represent the repulsive barrier laser and the yellow line the harmonic dipole trap.

The blue detuned beam is initially an isotropic gaussian mode TEM00 with a

diameter of 2mm and a wavelength of 532nm. The maximal laser outpout power is

1000 mW. An acousto-optical modulator allows fast switching off, and allows us to

control the height of the repulsive barrier. In order to shape the beam to cut the

optical dipole trap, we use a telescope of cylindrical lenses, to finally reach beam

waist of 2.3(1)µm at the position of the atoms (see Fig. 7.6). Also, a picomotor

(see Fig. 7.5) is set to align the green beam in the centre of the trap, and create

a population imbalance by creating an asymmetrical double well. The horizontal

imaging light (see section 5.5) used for the 6Li2 also need to pass through the mirror

after the picomotor, therefore we use a dichroic mirror (DMLP650) allowing the

imaging light to pass and to reflect the green beam into the main chamber.
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Figure 7.6: Evolution of the barrier laser vertical waist (blue line) and horizontal

waist (green line) along the optical path shown in the previous figure.

atoms cloud

Figure 7.7: The last coil of the Zeeman slower (see section 5.2) is used in order to

create a constant magnetic field on the atoms cloud in the double well.
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7.4 Prospects

A first step in the future experiment will be to reproduce Josephson oscillations in

the double well. Moreover, our experiment is designed to produce a second BEC

of 133Cs, this second specie could be used as an impurity among the 6Li atoms to

realise the Dicke model [103]. Another experiment will be perform large Josephson

oscillations at the BEC-BCS crossover in order to observe the creation of solitons

[102].



Chapter 8

Conclusions and outlook

The production of the molecular Bose-Einstein condensate is a challenging endeav-

our. The chapter 2 gives us the fundamental tools in order to understand the

realisation of a mBEC. The chapter 3 gives us a detailed description of the impor-

tant steps involved in the process, from the atomic beam production to the imaging

of the atoms cloud. Every step is characterized in order to optimize the temper-

ature and the density of the atoms all along the process. The full description of

our future dual species oven is described in appendix G. Currently, a grey molasses

[71] is being implemented, to do so a laser providing cooling and repumping light

is under construction. This will allow us to reach lower temperature at the MOT

stage. We have been able to load ≈ 2.106 atoms in the optical dipole trap. The

forced evaporation has also been enhanced by improving the AOM driver of the

optical dipole trap, allowing us to reach lower temperatures. Additionally, a sec-

ond photodiode has been added in the feedback loop of the PDI system to improve

the stability of the optical dipole trap all along the evaporative process, and reach

mBEC at very low temperatures. A better understanding of the Feshbach magnetic

coils and the optical trapping potential has led to more accurate simulations to de-

termine the trapping frequencies (see section 5.4.5) and obtain a better agreement

with the measurements, where also new methods have been proposed. A method to

determine the scattering length from the imaging laser frequency (see section 5.5.4)
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have been tested, with a more accurate and faster reading of the scattering length

value. For the first time in this experiment, an In-Situ imaging sequence has been

implemented and used to perform measurements. The chapter 4 characterized the

mBEC itself by fitting different models (Ideal gas, Semi-Ideal gas, Hartree Fock)

to the one dimensional atomic density distribution measurements obtain by in-situ

absorptions imagning. A program to analyse and average the atomic density profiles

has been developed. Also, the fitting program initially proposed in [80] to fit the

data to the different models has been improved and adapted to our experiment. This

program takes the trapping frequencies of the trapping potential (longitudinal and

radial), the scattering length as and the one-dimensional averaged density profiles,

to give us the temperature, the chemical potential, and the condensate fraction of

the mBEC. We test the three models using a statistical analysis method (see section

6.3). The stastitical analysis of the results showed that the Hatree-Fock model is

the most accurate to determine the thermodynamics properties of the mBEC when

the temperature approaches Tc the critical temperature. The HF models takes in

account the effects of the thermal cloud atoms interactions that depletes the con-

densate. Effects that are important due to the high interactions regime as > 1000a0.

Also, despite the relatively high interactions, the fits seem to hold and give sensitive

results. The results are summed up in the article proposal appendix H. Moreover,

the condensate radii has been calculated from the the chemical potential results,

and fitted to an analytical formula giving a relation between the radius of the con-

densate and the consensate fraction[1]. The good agreement between the chemical

potential (or condensate radius) gives us another indication of the consistency of the

fitting program. The chapter 5 describes the implementation of a double well shaped

optical trap, and proposes options to future experiments. On a different note, the

productivity of the laboratory has been improved by the implementation of a second

control system following the instructions in [65], allowing us to run both experiments

(6Li-133Cs mixture and Atom-Light integrated interface experiment[108]) present in

the laboratory at the same time. The next step will be to perform the measurement
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proposed in section 6.7, to confirm with an energy conservation based theory our

results about the Hartree-Fock model. Additionally, the dual species oven described

in appendix G is currently being implemented and tested. The second specie could

be used to add impurities in the double well shaped optical trap implemented in the

experiment (see section 7), in order to realise the Dicke model [103]. Another ex-

periment will be to perform large Josephson oscillations at the BEC-BCS crossover

in order to observe solitons[102].
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phase transition from a superfluid to a mott insulator in a gas of ultracold

atoms,” nature, vol. 415, no. 6867, p. 39, 2002.

[9] W. Ketterle, D. S. Durfee, and D. Stamper-Kurn, “Making, probing and un-

derstanding Bose-Einstein condensates,” arXiv preprint cond-mat/9904034,

1999.

[10] B. DeMarco and D. S. Jin, “Onset of fermi degeneracy in a trapped atomic

gas,” science, vol. 285, no. 5434, pp. 1703–1706, 1999.

[11] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, “Fermi-bose quantum

degenerate k 40- r 87 b mixture with attractive interaction,” Physical Review

Letters, vol. 89, no. 15, p. 150403, 2002.

[12] Z. Hadzibabic, C. Stan, K. Dieckmann, S. Gupta, M. Zwierlein, A. Görlitz,

and W. Ketterle, “Two-species mixture of quantum degenerate bose and fermi

gases,” Physical review letters, vol. 88, no. 16, p. 160401, 2002.

[13] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G.

Hulet, “Observation of fermi pressure in a gas of trapped atoms,” Science,

vol. 291, no. 5513, pp. 2570–2572, 2001.

[14] F. Schreck, L. Khaykovich, K. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles,

and C. Salomon, “Quasipure bose-einstein condensate immersed in a fermi

sea,” Physical Review Letters, vol. 87, no. 8, p. 080403, 2001.

[15] W. Ketterle and M. W. Zwierlein, “Making, probing and understanding ultra-

cold fermi gases,” arXiv preprint arXiv:0801.2500, 2008.



BIBLIOGRAPHY 178

[16] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. Raupach, S. Gupta,

Z. Hadzibabic, and W. Ketterle, “Observation of Bose-Einstein condensation

of molecules,” Physical review letters, vol. 91, no. 25, p. 250401, 2003.

[17] L. N. Cooper, “Bound electron pairs in a degenerate fermi gas,” Physical

Review, vol. 104, no. 4, p. 1189, 1956.

[18] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann,

L. Tarruell, S. Kokkelmans, and C. Salomon, “Experimental study of the bec-

bcs crossover region in lithium 6,” Physical review letters, vol. 93, p. 050401,

08 2004.

[19] W. Ketterle and M. W. Zwierlein, “Making, probing and understanding ultra-

cold Fermi gases,” pp. 20–30, Jan. 2008.

[20] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman,

“Stable 85 rb Bose-Einstein condensates with widely tunable interactions,”

Physical Review Letters, vol. 85, no. 9, p. 1795, 2000.

[21] J. Dalibard, “Notes de cours: Atomes ultra-froids,” ENS Ulm, Les gaz quan-

tiques, p. 108.

[22] B. DeMarco, J. Bohn, J. Burke Jr, M. Holland, and D. S. Jin, “Measurement

of p-wave threshold law using evaporatively cooled fermionic atoms,” Physical

review letters, vol. 82, no. 21, p. 4208, 1999.

[23] J. J. Sakurai and E. D. Commins, “Modern quantum mechanics, revised edi-

tion,” 1995.

[24] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-

Einstein condensation in trapped gases,” Reviews of Modern Physics, vol. 71,

no. 3, p. 463, 1999.



BIBLIOGRAPHY 179

[25] M. Greiner, C. A. Regal, and D. S. Jin, “Emergence of a molecular Bose-

Einstein condensate from a fermi gas,” Nature, vol. 426, no. 6966, pp. 537–540,

2003.

[26] S. Inouye, M. Andrews, J. Stenger, H.-J. Miesner, D. Stamper-Kurn, and

W. Ketterle, “Observation of feshbach resonances in a Bose-Einstein conden-

sate,” Nature, vol. 392, no. 6672, p. 151, 1998.

[27] C. Cohen-Tannoudji, B. Diu, and F. Laloë, “Mécanique quantique, tome 2,
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[100] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K.

Oberthaler, “Direct Observation of Tunneling and Nonlinear Self-Trapping

in a Single Bosonic Josephson Junction,” Physical Review Letters, vol. 95,

p. 010402, June 2005.

[101] S. K. Adhikari, H. Lu, and H. Pu, “Self-trapping of a fermi superfluid in

a double-well potential in the Bose-Einstein-condensate–unitarity crossover,”

Physical Review A, vol. 80, no. 6, p. 063607, 2009.

[102] P. Zou and F. Dalfovo, “Josephson oscillations and self-trapping of superfluid

fermions in a double-well potential,” Journal of Low Temperature Physics,

vol. 177, no. 5-6, pp. 240–256, 2014.

[103] J. Mumford, J. Larson, and D. O’Dell, “Impurity in a bosonic Josephson

junction: Swallowtail loops, chaos, self-trapping, and dicke model,” Physical

Review A, vol. 89, no. 2, p. 023620, 2014.

[104] A. Spuntarelli, P. Pieri, and G. Strinati, “Josephson effect throughout the

bcs-bec crossover,” Physical review letters, vol. 99, no. 4, p. 040401, 2007.

[105] D. Stadler, S. Krinner, J. Meineke, J.-P. Brantut, and T. Esslinger, “Observing

the drop of resistance in the flow of a superfluid fermi gas,” Nature, vol. 491,

no. 7426, p. 736, 2012.

[106] L. Salasnich, “L. salasnich, a. parola, and l. reatto, phys. rev. a 65, 043614

(2002).,” Phys. Rev. A, vol. 65, p. 043614, 2002.

[107] X. Antoine and R. Duboscq, “GPElab, a matlab toolbox to solve gross–

pitaevskii equations I: Computation of stationary solutions,” Computer

Physics Communications, vol. 185, no. 11, pp. 2969–2991, 2014.

[108] J. Nute, A quantum integrated light and matter interface. PhD thesis, Phd

thesis, University of Nottingham, 2017.



BIBLIOGRAPHY 188

[109] N. Levinson, “On the uniqueness of the potential in a schrodinger equation for

a given asymptotic phase,” Kgl. Danske Videnskab Selskab. Mat. Fys. Medd.,

vol. 25, 1949.


	Abstract
	Acknowledgements
	Introduction
	Interactions in an ultracold gas
	Elastic collisions
	Feshbach resonance

	Degenerate quantum gas
	Gas of bosons
	History
	How to count indistinguishable particles?
	Bose Einstein condensation of an ideal gas
	The chemical potential 

	Fermi gas
	BCS state
	BEC-BCS crossover
	Thermal and condensate molecules


	Basics of cold atoms physics
	Alkali atoms
	Interaction between atoms and a magnetic field
	Interaction between atoms and light
	The dipole force
	The scattering force


	Guideline to making a 6Li BEC
	Heating up the atoms
	Transfer to the main chamber
	First cooling in the main chamber
	The magneto-optical Trap (MOT)
	Compression stage
	Cooling limits

	Evaporative cooling in the main chamber
	Evaporative cooling
	Dipole trap
	Feshbach Coils
	Stabilization of the dipole trap
	Trapping frequencies

	Imaging
	Absorption imaging
	TOF
	In situ imaging
	High field imaging and scattering length determination


	Study of an interacting 6Li mBEC
	The Gross Pitaevskii equation
	Thomas-Fermi approximation
	Hartree-Fock equations

	The fitting models
	Ideal gas
	Semi-ideal
	Hartree-Fock
	Comparison between the SI and the HF model

	Fitting program
	Results
	Radius Measurement
	Relation between the radius of the condensate and the condensate fraction using ideal gas model
	First correction to the ideal model
	Analytical Hartree Fock model
	Comparaison of the 3 models

	Results
	Prospects: Using an Energy conservation Method to Compare in-situ atom models
	Total energy calculation
	Predictive capabilities
	Numerical integration
	Experimental application


	Initial work: Double well with 6Li molecules
	Introduction
	A Josephson junction in the cold atoms paradigm
	Experimental aparatus
	Prospects

	Conclusions and outlook
	Bibliography

